# Ch. 6: Wireless and Mobile Networks

#### Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
  - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
  - wireless: communication over wireless link
  - mobility: handling the mobile user who changes point of attachment to network









## Characteristics of selected wireless links







#### ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

# Wireless network taxonomy

|                               | single hop                                                                                          | multiple hops                                                                                                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| infrastructure<br>(e.g., APs) | host connects to<br>base station (WiFi,<br>WiMAX, cellular)<br>which connects to<br>larger Internet | host may have to<br>relay through several<br>wireless nodes to<br>connect to larger<br>Internet: <i>mesh net</i>                     |
| no<br>infrastructure          | no base station, no<br>connection to larger<br>Internet (Bluetooth,<br>ad hoc nets)                 | no base station, no<br>connection to larger<br>Internet. May have to<br>relay to reach other<br>a given wireless node<br>MANET,VANET |

## Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
  - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
  - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

# 802.11 LAN architecture



- wireless host
  communicates with base
  station
  - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
  - wireless hosts
  - access point (AP): base station
  - ad hoc mode: hosts only

# 802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
  - AP admin chooses frequency for AP
  - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
  - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
  - selects AP to associate with
  - may perform authentication [Chapter 8]
  - will typically run DHCP to get IP address in AP's subnet

# 802.11: passive/active scanning





#### passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to HI

#### active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

# How many MAC address fields in a 802.11 frame?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

# 802.11 frame: addressing



### Select a correct statement

- A. An AP can only have one SSID
- B. An AP and a router might be in one physical device
- C. We cannot have the same SSID for one local network
- D. A and B
- E. A, B and C

## 802.11: mobility within same subnet

- HI remains in same IP subnet: IP address can remain same
- switch: which AP is associated with HI?
  - self-learning (Ch. 5):
    switch will see frame from HI and "remember" which switch port can be used to reach HI





# global wireless roaming

- Stands for EDUcation ROAMing.
- Provides secure internet access for academic roamers.
- User experience "Open your laptop and be online."

| <u> ()</u>              | Fri 10:55 AM            | Phu Phung |
|-------------------------|-------------------------|-----------|
| Wi-Fi: Loo<br>Turn Wi-F | king for Netwo<br>i Off | rks 💥     |
| √ eduroam               |                         | <b>₽</b>  |
| ADVIS_G                 |                         | <b>₽</b>  |
| ADVIS_N                 |                         | ê 🤶       |
| BhatNet                 |                         | ₽ 🤶       |
| Charlie                 |                         | ₽ 🔶       |
| chrisoffice             | 2                       | ₽ 🔶       |
| chrisoffice             | 25                      | ê 🤶       |
| Hummel1                 | 218                     | ê 🤶       |
| UIC-Guest               | t                       | ((i       |
| UIC-WiFi                |                         | ê 🤶       |
| xfinitywifi             |                         | ((t·      |
| Join Other              | Network                 |           |
| Create Net              | twork                   |           |
| Open Netv               | work Preference         | s         |



#### EDUROAM architecture

Supplicant



# FORWARDING THE USER'S CREDENTIALS

• User's credentials forwarded via hierarchy of RADIUS



# Next lecture

• Wireless and Mobile Networks Readings Chapter 6