

CS450 – Introduction to Networking Lecture 40 – iClicker questions review

Phu Phung & Xiang Huo April 27, 2015

iClicker questions review

- 30 questions from lectures
- (Free discussions with any partner)
- Individual vote
- Time limit 1:10'
- Answers are shown in 5 seconds after each vote
- Moderated by the TA

- A. UDP is connection-oriented
- B. TCP is connectionless
- C. Datagram network is connectionless
- D. Virtual circuit network is connection-oriented
- E. Cand D

Switching via interconnection network

- A. Can handle multiple packets at the same time
- B. Faster than switching via memory or a bus
- C. Has no collision
- D. A and B
- E. A, B and C

What fields are not in an IP datagram header?

- A. Port number
- B. Fragment offset
- C. Header checksum
- D. A and B
- E. A, B and C

How many subnets in this figure?

A. 3

B. 6

C. 7

D. 10

How many number of hosts for this network a.b.c.d/24?

- A. 8
- B. 24
- C. 254
- D. 255
- E. 256

A. a.b.c.d/22

B. a.b.c.d/24

C. a.b.c.d/27

D. a.b.c.d/28

E. a.b.c.d/30

Assume a host in a local network with IP address of 10.0.0.5 open a TCP connection on port 1234 to connect to a web server at 131.30.123.5 (port 80), what is a possible row for this connection in the NAT translation table?

- A. $<131.30.123.5,80> \leftarrow \rightarrow <10.0.0.5, 1234>$
- B. <138.125.10.10, 5025> **←→** <10.0.0.5, 1234>
- C. $<10.0.0.5, 1234> \leftarrow \rightarrow <131.30.123.5,80>$
- D. <10.0.0.5, 80> ←→ <131.30.123.5,80>

Can we run a server, e.g. web server within a NAT?

A. Yes

B. Yes, but it can only communicate (send/receive) with hosts within the private network

C. No

IPv6 vs IPv4

- A. IPv6 increases the size of IP address
- B. IPv6 removes header checksum in IP header to reduce processing cost at routers
- C. IPv6 does not allow package fragmentation/ reassembly to improve speed/forwarding
- D. A and B
- E. A, B and C

IPv6 in practice

- A. IPv6 is implemented in practice, i.e., in the Internet
- B. IPv6 is used in mix with IPv4
- C. IPv4 has been replaced by IPv6
- D. A and B
- E. A, B and C

- A. In a global routing algorithm, all routers have complete topology, link cost info
- B. In a decentralized routing algorithm, router knows physical-connected neighbors, link costs to neighbors
- C. Link costs might be changed over the time
- D. A and B
- E. A, B and C

Dijkstra's algorithm: another example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux -	2,u	4,x		2,x	∞
2	uxy∙	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw 🗲					4,y
5	UXVVW7					

Shortest path from u to w according to above result

- A. 5 through v
- B. 4 through x
- C. 3 through x

D. 3 through y

- A. A link state routing protocol requires message exchange among all nodes in a network
- B. A distance vector routing protocol requires message exchanges between neighbor nodes only
- C. In link state, each node computes its own routing table while in distance vector, it's node routing table is used by others
- D. A and B
- E. A, B and C

Why is hierarchical routing needed?

- A. Routers are not identical
- B. The real network is too large to run a single routing protocol
- C. The Internet is "flat"
- D. A and B
- E. A, B and C

- A. The link layer does not provide any error correction mechanism
- B. The link layer provides reliable delivery services between adjacent nodes
- C. The link layer uses IP addresses to identify destinations
- D. A and B
- E. A, B and C

- A. Medium Access Control (MAC) is designed to handle collisions in transferring data in a channel
- B. MAC protocols are implemented in Network Interface Card (NIC)
- C. MAC addresses are unique and assigned in each NIC
- D. A and B
- E. A, B and C

Channel partitioning such as TDMA, FDMA

- A. Is perfectly fair in the sense that each node has the same opportunities
- B. A node is limited to a bandwidth of R/N (R=rate of the channel, N= number of nodes), even when it is the only one to send
- C. Can avoid collisions
- D. A and B
- E. A, B and C

- A. Channel partitioning can avoid collisions but is inefficient at low load
- B. Random access protocols allow a single node can fully utilize channel but have to deal with collisions
- C. "Taking turns" protocols cannot avoid collisions
- D. A and B
- E. A, B and C

ARP table

- A. Is formed and updated automatically by the ARP protocol
- B. Is used for same LAN
- C. Can be changed manually
- D. A and B
- E. A, B and C

How A knows IP address of R, MAC address of R

- A. DNS, DHCP
- B. IP, ARP
- C. DHCP, ARP
- D. DNS, IP

Preamble is used in Ethernet

- A. To synchronize receiver, sender clock rates
- B. To "wake up" the receiving adapter, i.e. to announce there will be frame coming
- C. To identify which protocol is used
- D. A and B
- E. A, B and C

Switches vs. routers

- A. Both are store-and-forward: switches are at link-layer, routers are at network-layer
- B. Both have forwarding tables: switches use MAC addresses, routers use IP addresses to forward date
- C. Both are "plug-and-play", i.e. no configuration
- D. A and B
- E. A, B and C

VLANs

- A. Is used to isolate traffics within a switch
- B. Routing is used among VLANs even within a physical switch
- C. VLANs can only formed within a physical switch
- D. A and B
- E. A, B and C

When student attaches laptop to campus network, requests/receives www.google.com, how many servers the laptop will send application level requests?

A. 1

B. 2

C. 3

D. 4

E. All above are possible

When student attaches laptop to campus network, requests/receives www.google.com, what separate protocols the laptop might use?

- A. DNS, HTTP
- B. UDP, DNS, TCP, HTTP
- C. DHCP, ARP, DNS, HTTP
- D. DHCP, ARP, DNS, TCP, HTTP
- E. UDP, DHCP, ARP, DNS, TCP, HTTP

- A. An AP can only have one SSID
- B. An AP and a router might be in one physical device
- C. We cannot have the same SSID for one local network
- D. A and B
- E. A, B and C

- A. A mobile device has a permanent address even it moves to another network
- B. A mobile device has a foreign address when it moves to another network
- C. An active connection between a correspondent and a mobile device is discontinued when the mobile device moves to another network
- D. A and B
- E. A, B and C

Digital signatures

- A. Are used to verify the sender
- B. Require the receiver knows public key of the sender to verify
- C. Can be used to ensure the integrity of sent data
- D. A and B
- E. A, B and C

In HTTPS

- A. Both public key infrastructure and symmetric key mechanism are used
- B. Both HTTP header fields and data are encrypted
- C. Secret keys to encrypt data are exchanged between client and server
- D. A and B
- E. A, B and C