
410 3 Python Intro

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

1.1 follow instructions, create your own version of dnacalc, the example program in Ch 8

1 Reading: Ch 8

2.1 use your text editor to create a new file called dnacalc.py

text color from TextMate2.2 Mac users enter these four lines:

#! /usr/bin/env python3

dna_seq = 'ATGAAC'
print("Sequence:", dna_seq)

2.3 Windows users can skip the #! line, just enter the last two lines above:

dna_seq = 'ATGAAC'
print("Sequence:", dna_seq)

print in Python32.4 NOTE: the example in the book is based on Python 2.7, so the print statement does not
include any parentheses:

print "Sequence:", dna_seq

see “conventions for names” below2.5 NOTE: the book use DNAseq instead of dna_seq

on my Windows system I saved it in Classes\Bio 410

2.6 save the file in one of your project directories

2.7 start your terminal emulator, use cd commands to navigate to the folder where you saved
the file

2.8 Mac users need to type this command to make the file “executable”

 chmod +x dnacalc.py

2.9 to run the program, just type the name of the file.

this is what I see when I run the program on my Mac:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC

2.10 if everything works, you should see the output in the terminal window

2 Hello, World

3.1 the first line in the program is an example of an assignment statement

3.2 there is a name on the left of the = and an expression on the right

3.3 Python creates a variable and assigns it the value of the expression

start with a letter

can be arbitrarily long

may contain digits and underscore (_) characters

3.4 rules for names:

3 Assignment Statements

Mac users: type python3 to launch Python 3.3 or later

Windows users: type python

4.1 if you run Python from the command line without specifying the name of a file it starts an
interactive session

4.2 you can type Python statements and test them out before you put them in a program

>>> is Python’s prompt4.3 try typing these assignment statements to experiment with names:

>>> n = 21
>>> sample_size = 100
>>> FirstName = 'Harry'

4.4 to see the value of a variable just type its name:

>>> n
21
>>> sample_size
100
>>> FirstName
'Harry'

4.5 in this example text in blue is what I typed, text in black is Python’s response

4.6 we can use the value of a variable in an expression on the right side of an assignment:

>>> n * sample_size
2100
>>> npoints = n * sample_size

4 Aside: Interactive Python

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python LinksMac users: type python3 to launch Python 3.3 or later

Windows users: type python

4.1 if you run Python from the command line without specifying the name of a file it starts an
interactive session

4.2 you can type Python statements and test them out before you put them in a program

>>> is Python’s prompt4.3 try typing these assignment statements to experiment with names:

>>> n = 21
>>> sample_size = 100
>>> FirstName = 'Harry'

4.4 to see the value of a variable just type its name:

>>> n
21
>>> sample_size
100
>>> FirstName
'Harry'

4.5 in this example text in blue is what I typed, text in black is Python’s response

4.6 we can use the value of a variable in an expression on the right side of an assignment:

>>> n * sample_size
2100
>>> npoints = n * sample_size

4 Aside: Interactive Python

5.1 learn to use interactive sessions to run “experiments"

5.2 if you ever have a question see if you can figure out how to answer it using an “interactive
experiment”

5.3 we’ll see lots of examples in this outline

✮5 Interactive Experiments

6.1 use descriptive names that help you remember what the variable is used for

6.2 start names with underscore letters

sample_size instead of SampleSize

dna_seq instead of DNAseq

6.3 prefer underscores for multi-part names

6 Conventions for Variable Names

7.1 use a built-in function named len to count the number of characters in a string

>>> s = 'epsilon'

>>> len(s)
7

7.2 other operations are defined by methods

7.3 write the name of a variable that refers to a string, a period, the method name, and a pair of
parentheses

>>> s.upper()
'EPSILON'

>>> s.capitalize()
'Epsilon'

7.4 some methods expect us to supply arguments when we call them

>>> s.find('sil')
2

>>> s.count('i')
1

7 Operations on Strings

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

7.1 use a built-in function named len to count the number of characters in a string

>>> s = 'epsilon'

>>> len(s)
7

7.2 other operations are defined by methods

7.3 write the name of a variable that refers to a string, a period, the method name, and a pair of
parentheses

>>> s.upper()
'EPSILON'

>>> s.capitalize()
'Epsilon'

7.4 some methods expect us to supply arguments when we call them

>>> s.find('sil')
2

>>> s.count('i')
1

7 Operations on Strings

8.1 add the following lines to your dnacalc.py program to have it compute the base counts in the
DNA string

a_count = dna_seq.count('A')
c_count = dna_seq.count('C')
g_count = dna_seq.count('G')
t_count = dna_seq.count('T')

print(a_count, c_count, g_count, t_count)

8.2 test the new version; this is the expected output:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC
3 1 1 1

8 Base Counts

9.1 instead of counts let’s print percentages

9.2 before we modify the program we’ll do some experiments in an interactive Python session

>>> 5 + 6
11

>>> 5 - 6
-1

>>> 5 * 6
30

>>> 30 / 5
6.0

>>> 31 / 5
6.2

if operands to +, -, and * are integers the result is an integer

Python3; see note below for Python2the division operator / creates “floating point” values

if you want an integer result (and there will be situations where we do) use the // operator

>>> 31 // 5
6

9.3 what we learned:

if we need the result to be a real number (e.g. when we’re computing percentages) we need to turn one of
the operands into a real before doing the division

use a builtin function named float to convert an object into a floating point number

>>> 3 / 7
0

>>> float(3) / 7
0.42857142857142855

float is still useful in Python3the same function converts strings of digits into a floating point number

>>> float("3.14159")
3.14159

9.4 in Python 2.7 (used in the textbook) dividing one integer by another produces an integer
result

>>> 31 / 5
6

9.5 change the print statements in your dnacalc program to print percentages

seq_length = len(dna_seq)

print('A:', a_count / seq_length)
print('C:', c_count / seq_length)
print('G:', g_count / seq_length)
print('T:', t_count / seq_length)

9.6 the result:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC
A: 0.5
C: 0.16666666666666666
G: 0.16666666666666666
T: 0.16666666666666666

9 Percentages

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

9.1 instead of counts let’s print percentages

9.2 before we modify the program we’ll do some experiments in an interactive Python session

>>> 5 + 6
11

>>> 5 - 6
-1

>>> 5 * 6
30

>>> 30 / 5
6.0

>>> 31 / 5
6.2

if operands to +, -, and * are integers the result is an integer

Python3; see note below for Python2the division operator / creates “floating point” values

if you want an integer result (and there will be situations where we do) use the // operator

>>> 31 // 5
6

9.3 what we learned:

if we need the result to be a real number (e.g. when we’re computing percentages) we need to turn one of
the operands into a real before doing the division

use a builtin function named float to convert an object into a floating point number

>>> 3 / 7
0

>>> float(3) / 7
0.42857142857142855

float is still useful in Python3the same function converts strings of digits into a floating point number

>>> float("3.14159")
3.14159

9.4 in Python 2.7 (used in the textbook) dividing one integer by another produces an integer
result

>>> 31 / 5
6

9.5 change the print statements in your dnacalc program to print percentages

seq_length = len(dna_seq)

print('A:', a_count / seq_length)
print('C:', c_count / seq_length)
print('G:', g_count / seq_length)
print('T:', t_count / seq_length)

9.6 the result:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC
A: 0.5
C: 0.16666666666666666
G: 0.16666666666666666
T: 0.16666666666666666

9 Percentages

10.1 as programs get bigger it’s important to add documentation

10.2 if a line contains a “pound sign” (#) Python ignores it and the rest of the line

10.3 put full-line comments at the top of the file to give a short overview of the program

see also: “docstrings” 10.4 sprinkle additional comments throughout the program

10.5 include partial comments at the end of a line for short notes

10.6 example from my version of dnacalc.py

Convert the counts to percentages

seq_length = len(dna_seq)

print('A:', a_count / seq_length) # note the division operator in Python3
print('C:', c_count / seq_length) # always returns floats
print('G:', g_count / seq_length)
print('T:', t_count / seq_length)

10 Comments

11.1 the output from the program is correct but not very pretty

11.2 we want to have all percentages appear as numbers of the form NN.NN, e.g. 16.67 instead
of 0.16666666666666666

11.3 the idea is to define a string with a “placeholder” and use an operator that inserts a value
into the string

%d means “integer in decimal format”, %f means “floating point value”, etc

see the table on p. 137 of the textbook

11.4 a placeholder is a percent sign followed by characters that specify how the value should be
formatted

11.5 the operation that inserts a value x into a string s is written s % x

11.6 example

>>> s = 'The forecast is for %d degrees'

>>> s % 45
'The forecast is for 45 degrees'

>>> s % 83
'The forecast is for 83 degrees'

11.7 the format string can contain extra information, e.g. about the number of characters to
use

>>> s = 'The forecast is for %4d degrees'
>>> s % 77
'The forecast is for 77 degrees'

>>> s = 'The forecast is for %-4d degrees'
>>> s % 77
'The forecast is for 77 degrees'

11.8 for floating point numbers we can specify the total width and the number of digits
following the decimal point

>>> 'A: %5.2f' % (float(3) / 6)
'A: 0.50'

>>> 'C: %5.2f' % (float(1) / 6)
'C: 0.17'

11.9 aside: repeat the second expression above, but leave out the parentheses

>>> 'C: %5.2f' % float(1) / 6

see discussion of “operator
precedence” below

11.10 can you explain what happened?

11.11 change the print statements so they print formatted strings:

print('A: %5.2f' % (100*a_count / seq_length))
print('C: %5.2f' % (100*c_count / seq_length))
print('G: %5.2f' % (100*g_count / seq_length))
print('T: %5.2f' % (100*t_count / seq_length))

11.12 the output now looks like this:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC
A: 50.00
C: 16.67
G: 16.67
T: 16.67

11 Formatted Output

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

11.1 the output from the program is correct but not very pretty

11.2 we want to have all percentages appear as numbers of the form NN.NN, e.g. 16.67 instead
of 0.16666666666666666

11.3 the idea is to define a string with a “placeholder” and use an operator that inserts a value
into the string

%d means “integer in decimal format”, %f means “floating point value”, etc

see the table on p. 137 of the textbook

11.4 a placeholder is a percent sign followed by characters that specify how the value should be
formatted

11.5 the operation that inserts a value x into a string s is written s % x

11.6 example

>>> s = 'The forecast is for %d degrees'

>>> s % 45
'The forecast is for 45 degrees'

>>> s % 83
'The forecast is for 83 degrees'

11.7 the format string can contain extra information, e.g. about the number of characters to
use

>>> s = 'The forecast is for %4d degrees'
>>> s % 77
'The forecast is for 77 degrees'

>>> s = 'The forecast is for %-4d degrees'
>>> s % 77
'The forecast is for 77 degrees'

11.8 for floating point numbers we can specify the total width and the number of digits
following the decimal point

>>> 'A: %5.2f' % (float(3) / 6)
'A: 0.50'

>>> 'C: %5.2f' % (float(1) / 6)
'C: 0.17'

11.9 aside: repeat the second expression above, but leave out the parentheses

>>> 'C: %5.2f' % float(1) / 6

see discussion of “operator
precedence” below

11.10 can you explain what happened?

11.11 change the print statements so they print formatted strings:

print('A: %5.2f' % (100*a_count / seq_length))
print('C: %5.2f' % (100*c_count / seq_length))
print('G: %5.2f' % (100*g_count / seq_length))
print('T: %5.2f' % (100*t_count / seq_length))

11.12 the output now looks like this:

[sasquatch:programs] ➤ dnacalc.py
Sequence: ATGAAC
A: 50.00
C: 16.67
G: 16.67
T: 16.67

11 Formatted Output

12.1 Python applies multiply and divide operators before add and subtract

>>> 2 * 3 + 4
10

>>> 2 * (3 + 4)
14

x % y means “x mod y”12.2 if operators have the same precedence they are applied left-to-right

>>> 12 % 5
2

>>> 12 % 5 * 2
4

if x is a number x % y means “the remainder of x divided by y”

12.3 what Python does to evaluate x % y depends on what x refers to

12.4 if x is a string x % y means “insert y into a placeholder in x”

>>> "n = %d" % 6
'n = 6'

>>> "n = %d" % 6 / 2
TypeError: unsupported operand type(s) for /: 'str' and 'int'

>>> "n = %d" % (6 / 2)
'n = 3'

12.5 bottom line: if you get an error message, especially one that complains about types of
operands, check your assumptions about precedence

12 Operator Precedence

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

12.1 Python applies multiply and divide operators before add and subtract

>>> 2 * 3 + 4
10

>>> 2 * (3 + 4)
14

x % y means “x mod y”12.2 if operators have the same precedence they are applied left-to-right

>>> 12 % 5
2

>>> 12 % 5 * 2
4

if x is a number x % y means “the remainder of x divided by y”

12.3 what Python does to evaluate x % y depends on what x refers to

12.4 if x is a string x % y means “insert y into a placeholder in x”

>>> "n = %d" % 6
'n = 6'

>>> "n = %d" % 6 / 2
TypeError: unsupported operand type(s) for /: 'str' and 'int'

>>> "n = %d" % (6 / 2)
'n = 3'

12.5 bottom line: if you get an error message, especially one that complains about types of
operands, check your assumptions about precedence

12 Operator Precedence

Python2: call a function named raw_input

Python3: the function is called input

example:

>>> dna_sequence = input('enter a DNA sequence: ')
enter a DNA sequence: AAACCC

Python prints the prompt, waits for the user to type a line and hit the return key

13.1 the book shows how to ask the user to type a sequence

13.2 I prefer to get input from the command line or from a file

13.3 replace the assignment statement that defines dna_seq with these lines

from sys import argv
dna_seq = argv[1]

the import statement tells Python we want to use the item called argv

13.4 sys is a module that defines lots of useful functions that get information from the operating
system

it is a list of items from the command line that started the program

argv[0] is the name of the program (in this case the string “dnacalc.py”)

argv[1] is the DNA string which the user enters on the command line

13.5 argv stands for “argument vector”

note the sequence on the
command line

13.6 example

[sasquatch:programs] ➤ dnacalc.py AAACCC
Sequence: AAACCC
A: 50.00
C: 50.00
G: 0.00
T: 0.00

what the notation a[i] means

how to create lists, add new items

how to check to make sure the user didn’t leave out the sequence when starting the program

13.7 we’ll look at lists in a later lecture

13 Get the Sequence from the Command Line

14.1 if the input sequence has lower case letters they will not be counted

[sasquatch:programs] ➤ dnacalc.5.py atcg
Sequence: atcg
A: 0.00
C: 0.00
G: 0.00
T: 0.00

variable names must be spelled and capitalized exactly how they appear when first defined

14.2 Python (and other languages) are very fussy about spelling and capitalization

14.3 common technique: “sanitize” the input by converting all the letters to upper case

the second assignment updates
the value of dna_seq

14.4 add a call to the method named upper:

dna_seq = argv[1]
dna_seq = dna_seq.upper()

14.5 or you can call upper in the first statement:

dna_seq = argv[1].upper()

14 Upper Case Letters

Bi 410/510: Introduction to Python LinksBi 410/510: Introduction to Python Links

14.1 if the input sequence has lower case letters they will not be counted

[sasquatch:programs] ➤ dnacalc.5.py atcg
Sequence: atcg
A: 0.00
C: 0.00
G: 0.00
T: 0.00

variable names must be spelled and capitalized exactly how they appear when first defined

14.2 Python (and other languages) are very fussy about spelling and capitalization

14.3 common technique: “sanitize” the input by converting all the letters to upper case

the second assignment updates
the value of dna_seq

14.4 add a call to the method named upper:

dna_seq = argv[1]
dna_seq = dna_seq.upper()

14.5 or you can call upper in the first statement:

dna_seq = argv[1].upper()

14 Upper Case Letters

15.1 what do you think this program will do if the input contains a letter that is not A, C, G, or T?

15.2 for extra credit on Project 2 decide how you want to handle non-DNA letters and modify
your program so it implements your solution

15 Challenge

16.1 as you learn new concepts add them to your “electronic lab notebook"

16.2 if you’re using a “snippet” app (e.q. Quiver on Mac OS X) add code and notes

16.3 examples: argv, format strings, print statements

16 Snippets

17.1 notice how this program was developed: we started with a simple version and gradually
added more complexity

if you test after you make a change you will catch errors while they are still “fresh”

you’ll know where the errors are and be able to find them more easily

17.2 test each version!

odds are there are several errors (typos, missing parentheses, logic errors, …)

tracking them down and fixing them is much harder

17.3 contrast this with a process that leads to an entire program being typed in without testing

start by copying the basic program outline from your snippet editor

add code that gets arguments from the command line

start adding the main logic, piece by piece

17.4 use the incremental development process in ALL your projects!

agile development (specs change, goals change as a project matures)

continual testing

“extreme programming” (especially when combined with pair programming)

see “iterative and incremental programming” at Wikipedia

17.5 related terms

✮✮17 ✮✮ Incremental Development

