Finite-Sample Analysis in Reinforcement
Learning

Mohammad Ghavamzadeh

INRIA Lille — Nord Europe, Team SequelL

Outline

© Introduction to RL and DP
© Approximate Dynamic Programming (AVI & API)
© How does Statistical Learning Theory come to the picture?

© Error Propagation (AVI & API Error Propagation)

@ An AVI Algorithm (Fitted Q-lteration)
o FQI: error at each iteration
@ Final performance bound of FQI

@ An API Algorithm (Least-Squares Policy Iteration)
@ Error at each iteration (LSTD error)
@ Final performance bound of LSPI

@ Discussion

Sequential Decision-Making under Uncertainty

2

%How Canl...?

@ Move around in the physical world (e.g. driving, navigation)

(]

Play and win a game

(]

Retrieve information over the web

(]

Medical diagnosis and treatment

(]

Maximize the throughput of a factory

(]

Optimize the performance of a rescue team Lonia

Reinforcement Learning (RL)

Action
% Reward Environment

State

@ RL: A class of learning problems in which an agent
interacts with a dynamic, stochastic, and incompletely
known environment

@ Goal: Learn an action-selection strategy, or policy, to
optimize some measure of its long-term performance

@ Interaction: Modeled as a MDP or a POMDP lreia

Markov Decision Process

MDP
@ An MDP M is atuple (X, A,r,p,~).

@ The state space X is a bounded closed subset of RY.

@ The set of actions A is finite (|.A| < o0).

@ The reward functionr : X x A — R is bounded by Rpax.
@ The transition model p(-|x, a) is a distribution over X"

@ v €(0,1) is a discount factor.

@ Policy: a mapping from states to actions m(x) e A

Value Function

For a policy 7

@ Value function V7. X =R
VT(x) =E |) A" (Xe, m(%1))[Xo = x]
t=0
@ Action-value function QT: X xA—->R

Q™(x,a) =E [Zwtr(xt,At)\Xo =X, Ap=a
t=0

Notation

Bellman Operator
@ Bellman operator for policy

T BY (X;Vmax) — BY (X?Vmax)
@ V7™ is the unique fixed-point of the Bellman operator
(TV)0) = r (. 7(0) +7 | p(dylx. 70V)
@ The action-value function Q™ is defined as

Q”(x,a)=r(x,a>+v/xp(dy|x,a>v7f(y>

Optimal Value Function and Optimal Policy

@ Optimal value function

V*(x) =supV7"(x) x e X

@ Optimal action-value function

Q*(x,a) =supQ~(x,a) Vx e X, Vae A

@ A policy 7 is optimal if

V7T(x) =V*(x) VX e X

Notation

Bellman Optimality Operator
@ Bellman optimality operator

T BV(X?Vmax) — BV(X;VmaX)

@ V*is the unique fixed-point of the Bellman optimality
operator

(TV)(x) = max r(x.2) + [p(ayx.av)]
acA X
@ Optimal action-value function Q* is defined as

QW&@ZN&®+fAMWVﬁWWW

Properties of Bellman Operators

@ Monotonicity: if V; <V, component-wise
TWV]_ < TﬂVZ and TV, <TVy
@ Max-Norm Contraction: VV3,V, € BY(X; Vinax)

||7—7TV1 - TWVZHOO < 7||V1 - V2||oo

||TV1 - 7-\/2||<>o < 7||V1 —V2||oo

Dynamic Programming Algorithms

Value Iteration
@ start with an arbitrary action-value function Qg

@ at each iteration k Qxr1 = TQx

Convergence
(*) Iimk_mvk =V*.

k— oo

V" =Viesalloo = 1TV = TViclloo < 71V " =Vidloo < 7¥IV* = Vol oo 25 0

Dynamic Programming Algorithms

Policy Iteration
@ start with an arbitrary policy mg

@ at each iteration k

@ Policy Evaluation: Compute Q™

@ Policy Improvement: Compute the greedy policy w.r.t. Q7

e (X) = (9m)(x) = agmax Q™ (x, a)

Convergence

Pl generates a sequence of policies with increasing performance

(V™ > V7) and stops after a finite number of iterations with an
optimal policy 7*.

\VAL S s S VAL < TV = TTk+1\/ Tk < lim (Tﬂkﬂ)nvﬁk =V Tk+1

n—oo

Approximate Dynamic Programming

Approximate Dynamic Programming Algorithms

Value Iteration
@ start with an arbitrary action-value function Qg

@ at each iteration k Qxr1 =T Qx

What if Q1 ~ TQx?
1Q* — Quall < 7|Q* — Qxl
&

Approximate Dynamic Programming Algorithms

Policy Iteration
@ start with an arbitrary policy g

@ at each iteration k

@ Policy Evaluation: Compute Q™

@ Policy Improvement: Compute the greedy policy w.r.t. Q«

M (X) = (9m)(x) = ag max Q™ (x, a)

What if we cannot compute Q™ exactly? (Compute Q™ ~ Q™ instead)

mra(X) = agmax Q™ (x, @) # (G)(X) — VTt > V7K

acA
\/.9 lreia

Statistical Learning Theory in RL & ADP

Approximate Value lteration (AVI) Qi1 ~ TQ

Statistical Learning Theory in RL & ADP

Approximate Value lteration (AVI) Qi1 ~ TQ

@ finding a function that best approximates 7Qx ~ Q = min; |[f — T Qx|

Statistical Learning Theory in RL & ADP
Approximate Value lteration (AVI) Qi1 ~ TQ
@ finding a function that best approximates 7Qx ~ Q = min; |[f — T Qx|

@ only noisy observations of 7Qy are available 7A’Qk

Target Function = 7T Qx Noisy Observation = 7A’Qk

Statistical Learning Theory in RL & ADP

Approximate Value lteration (AVI) Qi1 ~ TQ

@ finding a function that best approximates 7Qx ~ Q = mins ||f — 7 Qx]|,.

@ only noisy observations of 7Qy are available 7A’Qk
Target Function = 7T Qx Noisy Observation = 7A‘Qk

@ we minimize the empirical error Qi1 = Q = ming [|f — TQxllz

with the target of minimizing the true error Q = min¢ ||f — T Qx|

Statistical Learning Theory in RL & ADP

Approximate Value lteration (AVI) Qi1 ~ TQ

@ finding a function that best approximates 7Qx ~ Q = mins ||f — 7 Qx]|,.

@ only noisy observations of 7Qy are available 7A’Qk
Target Function = 7T Qx Noisy Observation = 7A‘Qk

@ we minimize the empirical error Qi1 = Q = ming [|f — TQxllz

with the target of minimizing the true error Q = min¢ ||f — T Qx|

@ objective: [|Q — TQl[u < |IQ — Qllu +/Q — TQ«l[,. to be small
N— N——

estimation error approximation error

Statistical Learning Theory in RL & ADP

Approximate Value lteration (AVI) Qi1 ~ TQ

@ finding a function that best approximates 7Qx ~ Q = mins ||f — 7 Qx]|,.

@ only noisy observations of 7Qy are available 7A’Qk
Target Function = 7T Qx Noisy Observation = 7A‘Qk

@ we minimize the empirical error Qi1 = Q = ming [|f — TQxllz

with the target of minimizing the true error Q = min¢ ||f — T Qx|

@ objective: [|Q — TQl[u < |IQ — Qllu +/Q — TQ«l[,. to be small
—_— —

estimation error approximation error

regression Lonose

Statistical Learning Theory in RL & ADP

Approximate Policy Iteration (API) - policy evaluation

@ finding a function that best approximates Q™ Q = ming ||f — Q™||,

@ only noisy observations of Q™ are available (5”
Target Function = Q™ Noisy Observation = (S’rk

@ we minimize the empirical error Q = min [|f — (SWHﬁ

with the target of minimizing the true error Q = ming ||f — Q7¢||,,

@ Objective: [|Q — Q™. < [|Q — Q|lu + [|Q — Q™||,. to be small
N—— N——

estimation error approximation error

regression Lons

Statistical Learning Theory in RL & ADP

Approximate Policy Iteration (API) k1 ~ Gy
@ finding a policy that best approximates G 7w =ming L(f, m; 1)

@ we minimize the empirical error Tepr = 7 = ming Z(F, m; 11)
with the target of minimizing the true error m = ming L(f, m; p)

@ Objective: L(7,mq; p) < L(7,m pu) + L(m,m; u) to be small
N—— N——r

estimation error approximation error

classification (we do not discuss it in this talk)

Statistical Learning Theory in RL & ADP

Approximate Policy Iteration (API) - policy evaluation
@ finding the fixed-point of 7™

@ only noisy observations of 7™ are available Tk

a fixed-point problem

SLT in RL & ADP
@ supervised learning methods (regression, classification) appear in the
inner-loop of ADP algorithms (performance at each iteration)
@ tools from SLT that are used to analyze supervised learning methods

can be used in RL and ADP (e.g., how many samples are required to achieve
a certain performance)

What makes RL more challenging?

@ the objective is not always to recover a target function from its noisy
observations (fixed-point vs. regression)

@ the target sometimes has to be approximated given sample trajectories
(non i.i.d. samples)

@ propagation of error (control problem) is there any hope?

lreia

Approximate Value Iteration (AVI)
Vi1 = TVk + e or V41 — TVk||oo = e

Proposition (AVI Error Propagation)
We run AVI for K iterations and mx = GVk

K+1

V¥ = V™| < IIV* = Vol|so-

2y 2y
—— MmaX €
(1 — 7)? o<k<k G g = vy

Proof
[IV* = Viqalloo STV = TVklloo + I TVk = Visalloo = VIIV* = Viklloo + ek

SO
K—1 1
V*—V < X=1=L KiIv* — v, <" max KiIV* — Vv,
I klloo < év e + 7] ollee < 7= max, e+ ollee

2
the result follows by the fact that ||V* — V™ ||o < 1—W||V* — Vi ||oo-
-

Approximate Policy Iteration (API)
©Q Vi=V™+e or |[Vk—V™|s = e (Policy Evaluation Error)
Q Vi =T"Vk+e or |[[Vk—T"™ V|l = e (Bellman Residual)

Proposition (API Asymptotic Performance)

. 2y .
Q) limsup |[[V* = V™||ee < ——— limsup ||Vk — V™|
el loo = T " (M = Ve
€k
A * e 27 g T
2 limsup [[V* = V™|l < ——z limsup [[Vk — T™ V||
K—o0 (1=7)? koo ——~——

€k

Approximate Dynamic Programming (ADP)

Proposition (AVI Asymptotic Performance)

. 2y
limsup [[V* = V™| < ——— limsup [[Viy1 — T Vk|[oo
K00 1 —72 kooo —m——=

€k

Proposition (API Asymptotic Performance)

. 2y .
Q) limsup |[[V* = V™||ee < —— limsup ||[Vk — V™|
el loo = T " (M = Ve
€k
A * s 27 A TT|
(2) limsup [[V* = V™|l < ——— limsup [[Vk — T™ V||

€k

Error Propagation

AVI Error Propagation

Error at each iteration k: ek = TVk — Vkuia

K is a greedy policy w.r.t. Vk _1 m« = G(Vk-1)

Proposition (AVI Pointwise Error Bound)
K—1

\VARR VAL < (l —’YPWK)il{ ZVka [(PW*)K—k + PTKPpTK—1 Pﬂ'k+1} ‘Ek‘
k=0

+ AP (PR PR PTO)] VT — vo\}

AVI Error Propagation

Proposition (AVI L, Error Bound) ek = TVk — Vki1

>k Ly 2
V"=Vl < 2l [CHE max llll + 27/ Vow] (A)

* | 2
IV =Vl < 2 [ChP ma lladl + 20 Vo] (A2)

AVI Error Propagation

Proposition (AVI L, Error Bound) ek = TVk — Vi1

* s 2
V" = V™]lp,, < ﬁ |:Cl/p max |€x |, +2’YK/mea><:| (A1)

0<k

* gy 2
[[VF = V™| < ﬁ |:C;1L/p or<nka<XK |lexllp.n + ZVK/meax:| (A2)

@ ||ex||p,.: error at each iteration k, note that e = 7V — Vi1

AVI Error Propagation

Proposition (AVI L, Error Bound) ek = TVk — Vki1

>k Ly 2
V" =Vl < sy [CH max Nl + 205/ "Vou| (AD)

* b 2
V" =Vl < ol [CHP max [l + 20"/ V| (2

@ ||ex||p, i error at each iteration k, note that e, = 7V — Vi1

@ 29K/PV, o initialization error [V* — V|

AVI Error Propagation

Proposition (AVI L, Error Bound) ek = TVk — Vi1

* s 2
V"=Vl € oy [CHE max llallo + 20 Vow] (A

x_ym 2y
IV =Vl < oty [C3/F ma o +20 Ve (2

@ ||ex]|p,.: error at each iteration k, note that e = 7V — Vi1
@ 2+/K/PVoy: initialization error |[V* — Vg

o . final performance is evaluated w.r.t. a measure

AVI Error Propagation (Concentrability Coefficients)
Final performance is evaluated w.r.t. a measure p # pu, ||V* —V7™||,,

Assumption 1. (Uniformly Stochastic Transitions)

Forall x € & and a € A, there exists a constant C,, < oo such that
P(:Ix,a) < Cpu(-).

Assumption 2. (Discounted-Average Concentrability of Future-State Distribution)

For any sequence of policies {mm}m>1, there exists a constant
Cp,u(M) < oo such that pP™P7™ .. . P™ < ¢, ,(m)u. We define

Cou=(1-1) Zm’y 'cp,u(m)

m>1

® NotethatC,, <C,. 4

API Error Propagation

Error at each iteration k: ek = Vi — T™V

Tk is a greedy policy w.r.t. Vk _1 mx = G(Vk_1)

Proposition (API Pointwise Error Bound)

K—-1
V*_Vﬂ'K SWZ(VPW*)K_k_l ‘(k‘—F(’YPW*)K‘Vx*Vl
k=0

°l

where =Pt (| — AP™) T _ PTT(| — Ap™) 7L

API Error Propagation

Proposition (API L, Error Bound) ek = Vik — T™ V.

* Ky 2
IV = V™o < 7 [cl/p maxK||ek||p,u+2vK/“vmax} (AL)

(1- PHo<k<

* M 2
||V -V ||00 S ﬁ |:C;J;‘/p Or<nka<XK ||Ek||p,u aF Z’YK/meax:| (AZ)

API Error Propagation

Proposition (API L, Error Bound) e = Vi — TV

* s 2
V"=Vl € oty [CHE max llallo + 20" Vow] (A

s _ym 2y
IV =Vl < oty [C3F ma o + 20 Vo (2

@ ||ex||p,.: error at each iteration k, note that e, = Vi — 7™V

@ 29K/PV, o initialization error |V* — V™

) : final performance is evaluated w.r.t. a measure

API Error Propagation (Concentrability Coefficients)

Final performance is evaluated w.r.t. a measure p # u, |[|V* = V™|, ,

Assumption 1. (Uniformly Stochastic Transitions)

Forall x € X and a € A, there exists a constant C,, < co such that
P([x,a) < Cpu().

Assumption 2. (Discounted-Average Concentrability of Future-State Distribution)

For any policy = and any non-negative integers s and t, there exists a
constant ¢, ,,(s,t) < co such that p(P*)*(P™)" <c, .(s,t)u. We

define 0o oo
Cou=(1-7)? Z ZVSHCP,M(Sa t)
s=0 t=0

@ NotethatC,, <C,.

Finite-Sample Performance Bound of an AVI
Algorithm

Approximate Value Iteration (AVI)

@ if F is a function space, then V|, can be defined as
Vk+1 = inf ||V — TVkH? = M>T Vg
VeF

(projection of TV into F according to the norm L)

Q ifVyy = I'I oo T Vi then AVI converges to the unique fixed-point of
N7, ie.VeF: V=N,TV

(T is a contraction in Lo.-norm and N4, is hon-expansive)

@ if we consider another norm, e.g. L,(u), then AVI does not
necessarily converge

(M, T is not necessarily a contraction)

An Approximate Value Iteration Algorithm

@ Linear function space F = {f : () = Zjdzl (1)}

T

{SDJ}Jd:l € B((Xv-A)' L)) o (Xv-A) - Rd? d)() = (901(')7 .- 'ﬂpd('))

Fitted Q-Iteration (FQI)
At each iteration k:
@ Generate N samples of the form (X;, A;, X/, R;), where
X, A~y X~ pCIXi, A, R ~ (X, A)
@ Build the training set Dy = {((Xi,Ai),?Qk(Xi,Ai))}:\‘:l, where
TQk(Xi,Ai) = Ri +ymaxae.4 Qx(X/,a)

9 Qui1 = agminx [[f —TQxll3 = agmin & SN, [F(Xi, A) = TQ(Xi, A
(regression)

FQI - Error at Each Iteration

Theorem (FQI - Error at Iteration k)

i=1’
X! ~p(-[Xi,A), R =r(X,A), and Q be the training set and the truncated
solution at the k’th iteration of FQI. Then with probability 1 — §, we have

Let F be a d-dim linear space, D, = {(Xi, A, X/, Ri)}N i, A) N 4,

IQ~TQully < 4 Jnf [If—TQulu+O <||a:|| '°g(1/‘”)+0< M)
eF N N

@ Note that Q.1 = (NQ .

FQI - Error at Each Iteration

Theorem (FQI - Error at Iteration k)

Let F be a d-dim linear space, D = {(Xi, A, X/, R) 1, (%, A) % u

X! ~p(-[Xi,A), R =r(X,A), and (5 be the tralnlng set and the truncated
solution at the k’th iteration of FQI. Then with probability 1 — §, we have

Q=T Qullu < 4 jnt It —TQu,+0 <|| q '°g(1/‘”> 0< aresl /5)>.

@ Note that Q.1 = (NQ .

@ N =# ofsamples , d = dimension of the linear function space F

FQI - Error at Each Iteration

Theorem (FQI - Error at Iteration k)

Let F be a d-dim linear space, Dx = {(Xi,Ai, X/, R)}I L6 A) B,

X! ~p(-[Xi,A), R =r(X,A), and (5 be the training set and the truncated
solution at the k’th iteration of FQI. Then with probability 1 — §, we have

I3~TQullu < 4 Jnf [1{~TQul},+O <| A2l '°g(1/‘”)+0< dlodt /5)>.

@ Note that Q.1 = (NQ .
@ N = # ofsamples , d = dimension of the linear function space F

9@ o — for =TM2,,TQx«: the best approximation of 7Q in 7 w.rt. u

FQI - Error at Each Iteration

FQI - Error at Iteration k

||6—TQK||H<4fi€n;||f—TQk||u+o<||] '09(1/‘”)+0< w>

N— ———
approximation error

estimation error

@ Approximation error: it depends on how well the function space F
can approximate 7 Qx

@ Estimation error: it depends on the number of samples N, the dim of
the function space d, and ||ox ||

FQI Error Bound

Theorem (FQI Error Bound)

LetQ_; € F be an arbitrary initial value function, (507 R (SK,l be the
sequence of truncated action-value functions generated by FQI after K
iterations, and 7k be the greedy policy w.r.t. (5}(_1. Then with probability
1 -4, we have

IV =V, < &{M{du(mﬂ 1o <Qmax '°if*<yf)>

d log(NK /9)
+o< TToa(NK /2])

ar Z’YK/ZQmaX}

FQI Error Bound

Theorem (FQI Error Bound)

LetQ_; € Fbean arbitrary initial value function, 60, ey éK_l be the
sequence of truncated action-value functions generated by FQI after K
iterations, and 7k be the greedy policy w.r.t. QK_;L. Then with probability
1 -6, we have

o . 2y I log(K /6)
HV -V P<(l_,y)2{ Cp.,u|:dp(7—]::]:)+o<Qmax NI/M >

d log(NK /9)
+o< TToa(NK /2])

ar Z’YK/ZQmaX}

@ Approximation error: d,(TF,F) = sup;.zinfge 7 [|g — TT||4

FQI Error Bound

Theorem (FQI Error Bound)

LetQ_; € Fbean arbitrary initial value function, 60, ey éK_l be the
sequence of truncated action-value functions generated by FQI after K
iterations, and 7k be the greedy policy w.r.t. éK_l. Then with probability
1 -6, we have

IV =V, < &{M{du(mﬂ +0 <Qmax 'ﬂfﬁ”)

e < d Iog(NK/6)>

N

ar Z’YK/ZQmaX}

@ Approximation error: d,(7TF,F) = sup;. zinfge 7 [|g — TT||,,

@ Estimation error: dependsonN,d,v,,K. Note that ||ag || < Smax

YV
= the smallest eigenvalue of the Gram matrix ([¢; ¢ du);ij
lreia.

FQI Error Bound

Theorem (FQI Error Bound)

Let Q_; € F be an arbitrary initial value function, 607 R (SK,l be the
sequence of truncated action-value functions generated by FQI after K
iterations, and ¢ be the greedy policy w.r.t. (NQK,l. Then with probability
1 -6, we have

IV = V]|, < ﬁ{m{d“(ﬂ’f) i <Qmax Ioil(Kuf)>

d log(NK /3)
+o< TToaNK /2])

-+ 2"/K/2Qmax}

@ Approximation error: d,(7F,F) = sup;zinfger[|g — TT||,.

@ Estimation error: dependson N,d,v,,K. Note that ||ak || < Q;”:‘*
= the smallest eigenvalue of the Gram matrix ([¢; ¢ dp);ij

@ Initialization error: error due to the choice of the initial action-value Lo
function |Q* — Qo] =

Finite-Sample Performance Bound of an API
Algorithm

Least-Squares Temporal-Difference Learning (LSTD)

@ Linear function space F = {f : f(-) = Z,q:l ajp (1)}

{efaeBiL) ¢ X =R 6() = (pu()--0a()
@ V7 is the fixed-point of 7™ TVT =V~
@ V7™ may not belong to F VT ¢ F

@ LSTD searches for the fixed-point of 1, 7™ instead (M- is a
projection into F w.r.t. L;-norm)

@ 77 is acontraction in Ly,-norm

@ L.o-projection is numerically expensive when the number of states
is large or infinite
@ LSTD searches for the fixed-point of I, , 7™
M2,,9 = argming - [[f —glf2,4

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of 1, 7™ exists, we call it the LSTD solution
Vrp =M, T"V1p

Vi
7—?"'\ T TTD
P
ol

HHV‘" Vrp = H;LT‘”VTD

(T"V1o — V10, 901)0 = 0,

(r" ++P™V1p — V1p, i), =0

d

o — > (6 — P,) - ol =
bj

cop =0 — Aamp=0D
i=1

i=1,...,d

Aj
@ Ingeneral, N, 7™ is not a contraction and does not have a fixed-point

@ If 4 = ™, the stationary dist. of 7, then M= 7™ has a unique fixed-pointZzzz—

LSTD Algorithm

Proposition (LSTD Performance)

VT —V < inf |[[VT — V||~
VT~ Vrolr < Jnf VT = V],

1
V17

LSTD Algorithm

@ We observe a trajectory generated by following the policy 7
(Xo,Ro, X1, R1; .., Xn) where Xiyq ~ P (- [X¢, 7(Xt)) and Ry = r (X¢, 7(Xt))

@ We build estimators of the matrix A and vector b

R Nt
A=y > ek [e (%) — v (X)), b= N D ei(X)Re
t=0 t=0

® Aarp=b , V() =4¢()Tam

whenn — cothen A — Aand b — b, and thus, &p — amp and \7TD — V1p.
lrria—

LSTD Error Bound

When the Markov chain induced by the policy under evaluation 7 has
a stationary distribution p™ (Markov chain is ergodic - e.g. 8-mixing), then

Theorem (LSTD Error Bound)

Let V be the truncated LSTD solution computed using n samples
along a trajectory generated by following the policy 7. Then with
probability 1 — 4, we have

= c . dlog(d/d

VT = Ve € == inf [V =]l + O 1 2L
V1 —~A2fer n

@ n=+# ofsamples , d = dimension of the linear function space F

@ 1 = the smallest eigenvalue of the Gram matrix ([¢i ¢j d)i
(Assume: eigenvalues of the Gram matrix are strictly positive - existence of the
model-based LSTD solution)

@ [-mixing coefficients are hidden in O notation Crria

LSTD Error Bound
LSTD Error Bound

~ . dlog(d/d
VT =Vl € —S inf VT —f||r + O /3199470
V1—~2 fer nv
—_— ————
approximation error

estimation error

@ Approximation error: it depends on how well the function space F
can approximate the value function V™

@ Estimation error: it depends on the number of samples n, the dim of
the function space d, the smallest eigenvalue of the Gram matrix v, the
mixing properties of the Markov chain (hidden in O)

lreia

LSPI Error Bound

Theorem (LSPI Error Bound)

LetV_; € F be an arbitrary initial value function, \707 . 7\7K71 be the
sequence of truncated value functions generated by LSPI after K iterations,
and ¢ be the greedy policy w.r.t. Vk_1. Then with probability 1 — 6, we have

4 dlog(dK /& =
[VF=V7&]], < ﬁ {\/CCM {ch(F) +0 < ?‘(”/)ﬂ +’Y%Rma><}
- W

LSPI Error Bound

Theorem (LSPI Error Bound)

LetV_; € F be an arbitrary initial value function, \70, . ,\7K,l be the
sequence of truncated value functions generated by LSPI after K iterations,
and ¢ be the greedy policy w.r.t. Vk_1. Then with probability 1 — 6, we have

.y 4y d log(dK /3) K1
[[VE=VTK]], < W {\/Ccp,u |:CEO(]:)+O < ﬁ + 772 Rmax
@ Approximation error: Eo(F) = sup, g7 infrex V™ — f[[um

LSPI Error Bound

Theorem (LSPI Error Bound)

LetV_; € F be an arbitrary initial value function, \70, e \7K_1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and mx be the greedy policy w.r.t. Vk_1. Then with probability 1 — §, we have

x_\ym 4y d log(dK /4) K—1
[IV*=Vv KPSW{\/CCP,M |:CE0(-7:)+O< “ho, +7 2 Rmax

@ Approximation error: Eo(F) = sup, g7 infie 7 [[VT — f||,n

@ Estimation error: dependsonn,d,v,,K

LSPI Error Bound

Theorem (LSPI Error Bound)

LetV_; € F be an arbitrary initial value function, \70, e \7K_1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and ¢ be the greedy policy w.r.t. Vk_1. Then with probability 1 — 6, we have

IV V7|, < uf—f,)z {\/ccp,u [ch(f) +0 (w)} +7¥Rm}

nuv,

@ Approximationerror: Eo(F) = sup, g7 infrex [[V™ — f[[um

@ Estimation error: dependsonn,d,v,,K

@ |Initialization error: error due to the choice of the initial value function
or initial policy [V* — V™|

LSPI Error Bound

LSPI Error Bound

d log(d
V=Vl < f”y)z {W {CEO(}'H—O(W)

K—1
+ 7 2 Rmax

Lower-Bounding Distribution

There exists a distribution x such that for any policy = € g(f), we have
< Cu™, where C < o is a constant and ™ is the stationary distribution of
m. Furthermore, we can define the concentrability coefficient C, . as before.

LSPI Error Bound

LSPI Error Bound

Vv, < 2 {\/cc,,.u [ch(fHo (,/ w>

Lower-Bounding Distribution

K-1
+ v 2 Rmax

There exists a distribution z such that for any policy = € G(F), we have
u < Cu™, where C < o is a constant and ™ is the stationary distribution of
«. Furthermore, we can define the concentrability coefficient C, . as before.

) = the smallest eigenvalue of the Gram matrix ([i ¢ d)i
lreia.

Discussion

we obtain the optimal rate of regression and classification for RL
(ADP) algorithms

What makes RL more challenging then?
@ the propagation of error (control problem)
@ the approximation error is more complex

@ the sampling problem (how to choose 1 - exploration problem)

Other Finite-Sample Analysis Results in RL

@ Approximate Value lteration [MS08]

@ Approximate Policy lteration

@ LSTD and LSPI [LGM10, LGM11]

@ Bellman Residual Minimization [MMLG10]

@ Modified Bellman Residual Minimization [ASM08]

@ Classification-based Policy Iteration [FYG06, LGM10, GLGS11]

@ Regularized Approximate Dynamic Programming
@ L,-Regularization
@ L,-Regularized Policy lteration [FGSMO08]
@ L,-Regularized Fitted Q-Iteration [FGSMO09]
@ L;-Regularization and High-Dimensional RL

@ Lasso-TD [GLMH11]
@ LSTD (LSPI) with Random Projections [GLMM10]

Bibliography |

D Antos, A., Szepesvari, Cs., and Munos, R.

Learning Near-Optimal Policies with Bellman Residual Minimization-based Fitted Policy Iteration and a
Single Sample Path.
Machine Learning Journal, 71:89-129, 2008

Farahmand, A., Ghavamzadeh, M., Szepesvari Cs., and Mannor, S.

Regularized Policy Iteration.
Proceedings of Advances in Neural Information Processing Systems 21, pp. 441-448, 2008

Farahmand, A., Ghavamzadeh, M., Szepesvari Cs., and Mannor, S.

Regularized Fitted Q-iteration for Planning in Continuous-Space Markovian Decision Problems.
Proceedings of the American Control Conference, pp. 725-730, 2009.

Fern, A., Yoon, S., and Givan, R.

Approximate Policy Iteration with a Policy Language Bias: Solving Relational Markov Decision Processes.
Journal of Artificial Intelligence Research, 25:85-118, 2006

Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B.

Classification-based Policy Iteration with a Critic.
Proceedings of the Twenty-Eighth International Conference on Machine Learning, pp. 1049-1056, 2011

Ghavamzadeh, M., Lazaric A., Munos, R., and Hoffman, M.

Finite-Sample Analysis of Lasso-TD.
Proceedings of the Twenty-Eighth International Conference on Machine Learning, pp. 1177-1184, 2011

) = & B &

Ghavamzadeh, M., Lazaric, A., Maillard, O., and Munos, R.

LSTD with Random Projections.

Proceedings of Advances in Neural Information Processing Systems 23, pp. 721-729, 2010 &’,_,rz

Bibliography Il

D Lazaric A., Ghavamzadeh, M., and Munos, R.

Analysis of a Classification-based Policy Iteration Algorithm.
Proceedings of the Twenty-Seventh International Conference on Machine Learning, pp. 607-614, 2010

Lazaric A., Ghavamzadeh, M., and Munos, R.

Finite-Sample Analysis of LSTD.
Proceedings of the Twenty-Seventh International Conference on Machine Learning, pp. 615-622, 2010

Lazaric A., Ghavamzadeh, M., and Munos, R.

Finite-Sample Analysis of Least-Squares Policy Iteration.
Accepted at the Journal of Machine Learning Research, 2011

Maillard, O., Munos, R., Lazaric A., and Ghavamzadeh, M.

Finite-Sample Analysis of Bellman Residual Minimization.
Proceedings of the Second Asian Conference on Machine Learning, pp. 299-314, 2010.

Munos, R. and Szepesvari, Cs.

Finite-Time Bounds for Fitted Value Iteration.
Journal of Machine Learning Research, 9:815-857, 2008.

Munos, R.

Performance Bounds in Lp-norm for Approximate Value Iteration.
SIAM Journal of Control and Optimization, 2007.

= = B B @

Munos, R.

Error Bounds for Approximate Policy Iteration.
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 560-567, 2003

Crzia-

