

Sample Complexity of Classification-based Policy Iteration Algorithms

Mohammad Ghavamzadeh

Adobe Research & INRIA Lille

Overview

Classification-based Policy Iteration Algorithms

Resource Allocation

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Overview

Sequential Decision-making under Uncertainty

Reinforcement Learning

Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms

An Algorithm – Direct Policy Iteration (DPI)

Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Computer Games

Computer Games

Routing & Traffic Control

Routing & Traffic Control

Career Decisions

Marketing & Finance

Marketing

Which ad to show to this customer???

Which ad has the highest probability to be clicked by this customer???

one-shot decision

Sequential Decision-Making under Uncertainty

Play and Win a Game

Multi-Player Games

Computer Games

Two-Player Games

Move around in the Physical World (e.g. driving, navigation)

... and many more

Power Management

BUT DAD, THAT IS THE MOST SEARCHED KEYWORD ON SEARCH ENGINES...

Information Retrieval

Factory Optimization

Medical Diagnosis & Treatment

Overview

Sequential Decision-making under Uncertainty

Reinforcement Learning

Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Reinforcement Learning (RL)

- ▶ RL: A class of learning problems in which an agent interacts with a dynamic, stochastic, and incompletely known environment
- ► Goal: Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance

Reinforcement Learning (RL)

Agent's Life

$$x_0 \ a_0 \ r_0 \ x_1 \ a_1 \ r_1 \ \dots \ \underbrace{x_t \ a_t \ r_t \ x_{t+1}}_{\text{unit of experience}} \ \dots$$

- ▶ Agent has incomplete knowledge about its environment
- ► **Agent** chooses actions so as to optimize some measure of its long-term performance

Reinforcement Learning (RL)

- ▶ RL: A class of learning problems in which an agent interacts with a dynamic, stochastic, and incompletely known environment
- ► Goal: Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance
- Interaction: Modeled as a MDP or a POMDP

Markov Decision Process

MDP

- ▶ An MDP \mathcal{M} is a tuple $\langle \mathcal{X}, \mathcal{A}, r, p, \gamma \rangle$.
- ▶ The state space \mathcal{X} is a bounded closed subset of \mathbb{R}^d .
- ▶ The set of actions \mathcal{A} is finite $(|\mathcal{A}| < \infty)$.
- ▶ The reward function $r: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ is bounded by R_{max} .
- ▶ The transition model $p(\cdot|x,a)$ is a distribution over \mathcal{X} .
- $ightharpoonup \gamma \in (0,1)$ is a discount factor.
- Policy: a mapping from states to actions $\pi(x) \in \mathcal{A}$

Value Function

For a policy π

Value function

$$V^{\pi}: \mathcal{X} \to \mathbb{R}$$

$$V^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, \pi(X_{t})) \mid X_{0} = x, \ \pi\right]$$

Action-value function

$$Q^{\pi}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$$

$$Q^{\pi}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) \mid X_{0} = x, \ A_{0} = a, \ \pi\right]$$

Optimal Value Function and Optimal Policy

Optimal value function

$$V^*(x) = \sup_{\pi} V^{\pi}(x) \qquad \forall x \in \mathcal{X}$$

Optimal action-value function

$$Q^*(x, a) = \sup_{\pi} Q^{\pi}(x, a) \qquad \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A}$$

• A policy π is **optimal** if

$$V^{\pi}(x) = V^*(x) \qquad \forall x \in \mathcal{X}$$

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation Motivating Examples Resource Allocation as Stochastic Multi-armed Bandit

Dynamic Programming Algorithms

Policy Iteration

- start with an arbitrary policy π_0
- ▶ at each iteration k
 - ▶ Policy Evaluation: Compute Q^{π_k}
 - ▶ Policy Improvement: Compute the greedy policy w.r.t. Q^{π_k}

$$\pi_{k+1}(x) = (\mathcal{G}\pi_k)(x) = \underset{a \in \mathcal{A}}{\arg \max} Q^{\pi_k}(x, a) \qquad \forall x \in \mathcal{X}$$

* \mathcal{G} is called the **greedy policy operator**

Dynamic Programming Algorithms

Policy Iteration

- \triangleright start with an arbitrary policy π_0
- at each iteration k
 - ▶ Policy Evaluation: Compute Q^{π_k}
 - ▶ Policy Improvement: Compute the greedy policy w.r.t. Q^{π_k}

$$\pi_{k+1}(x) = (\mathcal{G}\pi_k)(x) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^{\pi_k}(x, a) \qquad \forall x \in \mathcal{X}$$

- * \mathcal{G} is called the **greedy policy operator**
- * the new policy resulted from the application of \mathcal{G} is no worse than the old one

$$\pi_{k+1} = \mathcal{G}\pi_k \longrightarrow V^{\pi_{k+1}} \ge V^{\pi_k}$$

What will happen if we cannot compute Q^{π_k} ? Compute $\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$ instead

What will happen if we cannot compute Q^{π_k} ? Compute $\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$ instead

Why?

What will happen if we cannot compute Q^{π_k} ? Compute $\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$ instead

Why?

- ightharpoonup state space ${\mathcal X}$ and/or action space ${\mathcal A}$ are large or infinite
- not enough **time** to compute Q^{π_k}
- ▶ model of the system (transitions p and rewards r) is unknown
- ▶ not enough **samples** to compute Q^{π_k}

Approximate Dynamic Programming & Reinforcement Learning

Approximate Dynamic Programming Algorithms

Approximate Policy Iteration

- start with an arbitrary policy π_0
- ▶ at each iteration k
 - Policy Evaluation: Compute \widehat{Q}^{π_k}

$$\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$$

▶ Policy Improvement: Compute the greedy policy w.r.t. \widehat{Q}^{π_k}

$$\pi_{k+1}(x) = \underset{a \in \mathcal{A}}{\arg \max} \widehat{Q}^{\pi_k}(x, a) \qquad \forall x \in \mathcal{X}$$

Approximate Dynamic Programming Algorithms

Approximate Policy Iteration

- \triangleright start with an arbitrary policy π_0
- at each iteration k
 - ▶ Policy Evaluation: Compute \widehat{Q}^{π_k}

$$\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$$

Policy Improvement: Compute the greedy policy w.r.t. \widehat{Q}^{π_k}

$$\pi_{k+1}(x) = \underset{a \in \mathcal{A}}{\arg \max} \widehat{Q}^{\pi_k}(x, a) \qquad \forall x \in \mathcal{X}$$

$$\pi_{k+1}(x) = \underset{a \in A}{\operatorname{arg max}} \widehat{Q}^{\pi_k}(x, a) \neq (\mathcal{G}\pi_k)(x) \longrightarrow V^{\pi_{k+1}} \stackrel{?}{\geq} V^{\pi_k}$$

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms
An Algorithm – Direct Policy Iteration (DPI)
Finite-sample Performance Analysis of DPI

Resource Allocation
Motivating Examples
Resource Allocation as Stochastic Multi-armed Bandit

Value-based (Approximate) Policy Iteration

* We use Monte-Carlo estimation for illustration purposes

Classification-based Policy Iteration

* The idea first introduced by Lagoudakis & Parr (2003) and Fern et al. (2004)

Value-based vs Classification-based Policy Iteration

Appealing Properties

▶ **Property 1.** More important to have a policy with a performance similar to the greedy policy w.r.t. Q^{π_k} than an accurate approximation of Q^{π_k}

► **Property 2.** In some problems good policies are easier to represent and learn than their corresponding value functions

Tetris

Outline

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms
An Algorithm – Direct Policy Iteration (DPI)
Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Input: policy space Π , state distribution ρ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

Initialize: Let $\pi_0 \in \Pi$ be an arbitrary policy

for
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$

for all states $x_i \in \mathcal{D}_k$ and actions $a \in \mathcal{A}$ do

for
$$j=1$$
 to M do

Perform a rollout according to policy π_k and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and $x^1 \sim p(\cdot | x_i, a)$

end for

$$\widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^{M} R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

(classifier)

end for

Input: policy space Π , state distribution ρ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

Initialize: Let $\pi_0 \in \Pi$ be an arbitrary policy

for
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$

for all states $x_i \in \mathcal{D}_k$ and actions $a \in \mathcal{A}$ do

for
$$j=1$$
 to M do

Perform a rollout according to policy π_k and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and $x^1 \sim p(\cdot | x_i, a)$

end for

$$\hat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^{M} R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

(classifier)

end for


```
Input: policy space \Pi, state distribution \rho, number of rollout states N, number of
rollouts per state-action pair M, rollout horizon H
Initialize: Let \pi_0 \in \Pi be an arbitrary policy
for k = 0, 1, 2, ... do
   Construct the rollout set \mathcal{D}_k = \{x_i\}_{i=1}^N, x_i \stackrel{\text{iid}}{\sim} \rho
   for all states x_i \in \mathcal{D}_k and actions a \in \mathcal{A} do
       for j=1 to M do
          Perform a rollout according to policy \pi_k and return
                                 R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{n-1} \gamma^t r(x^t, \pi_k(x^t)),
          with x^t \sim p(\cdot | x^{t-1}, \pi_k(x^{t-1})) and x^1 \sim p(\cdot | x_i, a)
       end for
      \widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)
   end for
   \pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)
                                                                                                            (classifier)
end for
```



```
Input: policy space \Pi, state distribution \rho, number of rollout states N, number of
rollouts per state-action pair M, rollout horizon H
Initialize: Let \pi_0 \in \Pi be an arbitrary policy
for k = 0, 1, 2, ... do
   Construct the rollout set \mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho
   for all states x_i \in \mathcal{D}_k and actions a \in \mathcal{A} do
       for j=1 to M do
          Perform a rollout according to policy \pi_k and return
                                 R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{n-1} \gamma^t r(x^t, \pi_k(x^t)),
          with x^t \sim p(\cdot | x^{t-1}, \pi_k(x^{t-1})) and x^1 \sim p(\cdot | x_i, a)
       end for
      \widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)
   end for
   \pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)
                                                                                                             (classifier)
end for
```


^{*} How to select the sampling distribution ρ ?

```
Input: policy space \Pi, state distribution \rho, number of rollout states N, number of
rollouts per state-action pair M, rollout horizon H
Initialize: Let \pi_0 \in \Pi be an arbitrary policy
for k = 0, 1, 2, ... do
   Construct the rollout set \mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho
   for all states x_i \in \mathcal{D}_k and actions a \in \mathcal{A} do
       for j=1 to M do
          Perform a rollout according to policy \pi_k and return
                                 R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{n-1} \gamma^t r(x^t, \pi_k(x^t)),
          with x^t \sim p(\cdot | x^{t-1}, \pi_k(x^{t-1})) and x^1 \sim p(\cdot | x_i, a)
       end for
      \widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)
   end for
   \pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)
                                                                                                             (classifier)
end for
```


^{*} How to select the sampling distribution ρ ?

^{**} Can we use the same set of samples for all iterations?

```
Input: policy space \Pi, state distribution \rho, number of rollout states N, number of
rollouts per state-action pair M, rollout horizon H
Initialize: Let \pi_0 \in \Pi be an arbitrary policy
for k = 0, 1, 2, ... do
   Construct the rollout set \mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho
    for all states x_i \in \mathcal{D}_k and actions a \in \mathcal{A} do
       for j=1 to M do
          Perform a rollout according to policy \pi_k and return
                                 R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{n-1} \gamma^t r(x^t, \pi_k(x^t)),
          with x^t \sim p(\cdot | x^{t-1}, \pi_k(x^{t-1})) and x^1 \sim p(\cdot | x_i, a)
       end for
      \widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)
   end for
   \pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)
                                                                                                             (classifier)
end for
```

^{**} Can we use the same set of samples for all iterations? yes (more complex analysis)

^{*} How to select the sampling distribution ρ ?

Input: policy space Π , state distribution ρ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

Initialize: Let $\pi_0 \in \Pi$ be an arbitrary policy

$$\quad \text{for } k=0,1,2,\dots \text{ do}$$

Construct the rollout set
$$\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$$

for all states
$$x_i \in \mathcal{D}_k$$
 and actions $a \in \mathcal{A}$ do

for
$$j=1$$
 to M do

Perform a rollout according to policy π_k and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with
$$x^t \sim p(\cdot|x^{t-1}, \pi_k(x^{t-1}))$$
 and $x^1 \sim p(\cdot|x_i, a)$

end for

$$\widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

end for

(classifier)


```
Input: policy space \Pi, state distribution \rho, number of rollout states N, number of
rollouts per state-action pair M, rollout horizon H
Initialize: Let \pi_0 \in \Pi be an arbitrary policy
for k = 0, 1, 2, ... do
   Construct the rollout set \mathcal{D}_k = \{x_i\}_{i=1}^N, x_i \stackrel{\text{iid}}{\sim} \rho
   for all states x_i \in \mathcal{D}_k and actions a \in \mathcal{A} do
       for j = 1 to M do
          Perform a rollout according to policy \pi_k and return
                                 R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{n-1} \gamma^t r(x^t, \pi_k(x^t)),
          with x^t \sim p(\cdot | x^{t-1}, \pi_k(x^{t-1})) and x^1 \sim p(\cdot | x_i, a)
       end for
       \widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)
   end for
   \pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)
                                                                                                            (classifier)
end for
```


^{*} rollouts are allocated *uniformly* over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$. Other possibilities?

Input: policy space Π , state distribution ρ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

Initialize: Let $\pi_0 \in \Pi$ be an arbitrary policy

for
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$

for all states $x_i \in \mathcal{D}_k$ and actions $a \in \mathcal{A}$ do

for
$$j = 1$$
 to M do

Perform a rollout according to policy π_k and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and $x^1 \sim p(\cdot | x_i, a)$

end for

$$\widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^{M} R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \operatorname{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

(classifier)

end for

► Empirical Gap-based Error

$$\widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi) = \frac{1}{N} \sum_{i=1}^{N} \left[\max_{a \in \mathcal{A}} \widehat{Q}^{\pi_k}(x_i, a) - \widehat{Q}^{\pi_k}(x_i, \pi(x_i)) \right]$$

Empirical Gap-based Error

$$\widehat{\mathcal{L}}_{\pi_k}(\widehat{\boldsymbol{\rho}}; \pi) = \frac{1}{N} \sum_{i=1}^{N} \left[\max_{a \in \mathcal{A}} \widehat{Q}^{\pi_k}(x_i, a) - \widehat{Q}^{\pi_k}(x_i, \pi(x_i)) \right]$$

* $\widehat{\rho}$: empirical distribution induced by \mathcal{D}_k

► Empirical Gap-based Error

$$\widehat{\mathcal{L}}_{\pi_k}(\widehat{\boldsymbol{\rho}};\pi) = \frac{1}{N} \sum_{i=1}^{N} \left[\max_{a \in \mathcal{A}} \widehat{Q}^{\pi_k}(x_i, a) - \widehat{Q}^{\pi_k}(x_i, \pi(x_i)) \right]$$

- * $\hat{\rho}$: empirical distribution induced by \mathcal{D}_k
- ** $\widehat{Q}^{\pi_k}(x_i,a)$: rollout estimation of $Q^{\pi_k}(x_i,a)$

► True Gap-based Error

$$\mathcal{L}_{\pi_k}(\rho; \pi) = \mathbb{E}_{x \sim \rho} \left[\max_{a \in \mathcal{A}} Q^{\pi_k}(x, a) - Q^{\pi_k}(x, \pi(x)) \right]$$

Gap-based vs. Mistake-based Errors

► Gap-based Error (weighted loss)

$$\mathcal{L}_{\pi_{k}}(\rho;\pi) = \mathbb{E}_{x \sim \rho} \left[\max_{a \in \mathcal{A}} Q^{\pi_{k}}(x,a) - Q^{\pi_{k}}(x,\pi(x)) \right]$$

$$= \int_{\mathcal{X}} \underbrace{\mathbb{I} \Big\{ \pi(x) \neq \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^{\pi_{k}}(x,a) \Big\}}_{\text{mistake}} \underbrace{\left[\max_{a \in \mathcal{A}} Q^{\pi_{k}}(x,a) - Q^{\pi_{k}}(x,\pi(x)) \right]}_{\text{cost/regret}} \rho(dx)$$

► Mistake-based Error (0/1 loss)

$$\begin{split} \mathcal{L}_{\pi_k}(\rho; \pi) &= \mathbb{E}_{x \sim \rho} \left[\mathbb{I} \Big\{ \pi(x) \neq (\mathcal{G}\pi_k)(x) \Big\} \right] \\ &= \int_{\mathcal{X}} \underbrace{\mathbb{I} \Big\{ \pi(x) \neq \mathop{\arg\max}_{a \in \mathcal{A}} Q^{\pi_k}(x, a) \Big\}}_{\text{mistake}} \rho(dx) \end{split}$$

Outline

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Error at Each Iteration

Error at each Iteration (DPI)

Budget =
$$B$$
 \longrightarrow Policy Space = Π \longrightarrow $\pi_{k+1} \approx \mathcal{G}\pi_k$

Error at iteration k

$$||\pi_{k+1} - \mathcal{G}\pi_k||_{1,\rho} \le f(B,\Pi,\delta)$$
 w.p. $1 - \delta$

Error at each Iteration (DPI)

Budget =
$$B$$
 \longrightarrow Policy Space = Π \longrightarrow $\pi_{k+1} \approx \mathcal{G}\pi_k$

Error at iteration k

$$||\pi_{k+1} - \mathcal{G}\pi_k||_{1,\rho} = \mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq f(B, \Pi, \delta)$$
 w.p. $1 - \delta$

Bound on the Error at each Iteration

Theorem

Let Π be a policy space with $h=VC(\Pi)<\infty$ and ρ be a distribution over \mathcal{X} . Let N be the number of states in \mathcal{D}_k drawn i.i.d. from ρ , H be the rollout horizon, and M be the number of rollouts per state-action pair. Let

$$\pi_{k+1} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

be the policy computed at the k 'th iteration of DPI . Then, for any $\delta>0$

$$\mathcal{L}_{\pi_k}(\rho ; \pi_{k+1}) \leq \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho ; \pi) + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}),$$

with probability $1 - \delta$, where

$$\epsilon_1 = 16 Q_{\max} \sqrt{\frac{2}{N} \left(\frac{h}{\log \frac{eN}{h} + \log \frac{32}{\delta}}\right)} \quad \textit{and} \quad \epsilon_2 = (1 - \gamma^{\textcolor{red}{H}}) Q_{\max} \sqrt{\frac{2}{MN} \log \frac{4|\mathcal{A}|}{\delta}} \; .$$

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi)}_{\text{approximation error}} + 2(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max})$$

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi)}_{\text{approximation error}} + 2(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max})$$

▶ approximation error: depends on how well the policy space Π (classifier) can approximate the greedy policy $\mathcal{G}\pi_k$

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi)}_{\text{approximation error}} + \underbrace{\frac{2 \left(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max}\right)}{\text{estimation error}}}_{\text{estimation error}}$$

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi)}_{\text{approximation error}} + \underbrace{2 \left(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max} \right)}_{\text{estimation error}}$$

estimation error

$$\epsilon_1 = 16Q_{\max}\sqrt{\frac{2}{N}\left(h\log\frac{eN}{h} + \log\frac{32}{\delta}\right)} \qquad \qquad \epsilon_2 = (1-\gamma^H)Q_{\max}\sqrt{\frac{2}{MN}\log\frac{4|\mathcal{A}|}{\delta}}$$

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi)}_{\text{approximation error}} + \underbrace{2 \left(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max} \right)}_{\text{estimation error}}$$

estimation error

$$\epsilon_1 = 16Q_{\max} \sqrt{\frac{2}{N} \left(h \log \frac{eN}{h} + \log \frac{32}{\delta} \right)} \qquad \epsilon_2 = (1 - \gamma^{H}) Q_{\max} \sqrt{\frac{2}{MN} \log \frac{4|\mathcal{A}|}{\delta}}$$

- ▶ avoid overfitting (ϵ_1) : take $N \gg h$
- fixed budget of rollouts B = MN: take M = 1 and N = B
- fixed budget B=MNH and M=1: take $O(\frac{\log B}{\log 1/\gamma})$ and N=O(B/H)

Main steps

- ▶ Bound on $\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \mathcal{L}_{\pi_k}(\widehat{\rho}; \pi_{k+1})$ using a VC-bound ϵ_1
- lacktriangle Replace $Q^{\pi_k}(x_i,a)$ with $Q_H^{\pi_k}(x_i,a)$ $\gamma^{\mathbf{H}}\mathbf{Q}_{\mathrm{max}}$
- lacksquare Bound on $\widehat{Q}^{\pi_k}(x_i,a) Q_H^{\pi_k}(x_i,a)$ using Chernoff-Hoeffding $\epsilon_{f 2}$
- lacktriangledown π_{k+1} minimizes the empirical error $\widehat{\mathcal{L}}_{\pi_k}(\widehat{
 ho};\pi)$

Error Propagation & Final Performance Bound

Final Performance Bound

Final Objective: Bound the error after K iteration of the alg.

$$||V^* - V^{\pi_K}||_{1,\mu} \le f(B, \Pi, \delta, K)$$
 w.p. $1 - \delta$

 π_K is the policy computed by the algorithm after K iterations

Final Performance Bound

Final Objective: Bound the error after K iteration of the alg.

$$||V^* - V^{\pi_K}||_{1,u} \le f(B, \Pi, \delta, K)$$
 w.p. $1 - \delta$

 π_K is the policy computed by the algorithm after K iterations

Error Propagation: How the error at each iteration $||\pi_{k+1} - \mathcal{G}\pi_k||_{1,\rho}$ propagates through the iterations of the algorithm

Pointwise Error Propagation

Lemma

Let π_k , π_{k+1} , and π_K be the policies learned by DPI at iterations k, k+1, and K, then we have

$$V^* - V^{\pi_K} \le (\gamma P^*)^K (V^* - V^{\pi_0}) + \sum_{k=0}^{K-1} (\gamma P^*)^{K-k-1} E_k \,\ell_{\pi_k}(\pi_{k+1})$$

where
$$E_k = (I - \gamma P^{\pi_{k+1}})^{-1}$$
 and

$$\ell_{\pi_k}(x; \pi_{k+1}) = \max_{a \in A} Q^{\pi_k}(x, a) - Q^{\pi_k}(x, \pi(x)), \qquad \forall x \in \mathcal{X}.$$

DPI Final Performance Bound

Theorem

Let Π be a policy space with VC-dimension h and π_K be the policy generated by DPI after K iterations. Then, for any $\delta > 0$

$$||V^* - V^{\pi_K}||_{1,\mu} \le \frac{1}{(1 - \gamma)^2} C_{\mu,\rho} \Big(\frac{d(\Pi, \mathcal{G}\Pi)}{d(\Pi, \mathcal{G}\Pi)} + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}) \Big) + 2\gamma^K Q_{\max}$$
 (A1)

with probability $1 - \delta$, where

$$\epsilon_1 = 16Q_{ ext{max}}\sqrt{rac{2}{N}\left(h\lograc{eN}{h} + \lograc{32K}{\delta}
ight)}$$
 and

$$\epsilon_2 = (1 - \gamma^H) Q_{\text{max}} \sqrt{\frac{2}{MN} \log \frac{4|\mathcal{A}|K}{\delta}} \ .$$

Concentrability Coefficient

For any policy $\pi \in \Pi$ and any non-negative integers s and t, there exists a constant $C_{\mu,\rho}(s,t) < \infty$ such that

$$\mu(P^*)^s(P^\pi)^t \le C_{\mu,\rho}(s,t) \ \rho$$

We define

$$C_{\mu,\rho} = (1 - \gamma)^2 \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \gamma^{s+t} C_{\mu,\rho}(s,t)$$

Approximation Error

Inherent Greedy Error

$$d(\Pi, \mathcal{G}\Pi) = \sup_{\pi \in \Pi} \inf_{\pi' \in \Pi} \mathcal{L}_{\pi}(\rho; \pi')$$

An Open Question?

Q. rollouts are allocated *uniformly* over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$

An Open Question?

Q. rollouts are allocated *uniformly* over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$

How to allocate a fixed budget of rollouts over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$ in order to have an accurate training set for the classifier???

An Open Question?

Q. rollouts are allocated *uniformly* over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$

How to allocate a fixed budget of rollouts over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$ in order to have an accurate training set for the classifier???

uniform allocation can be wasteful

An Open Question?

Q. rollouts are allocated *uniformly* over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$

How to allocate a fixed budget of rollouts over $x \in \mathcal{D}_k$ and $a \in \mathcal{A}$ in order to have an accurate training set for the classifier???

uniform allocation can be wasteful

A. adaptive resource allocation

 (x_1)

• • •

 (x_i)

• • •

 x_N

 $R(x_i, a_j)$ is a sample from a distribution whose mean value is $Q(x_i, a_j)$

 $R(x_i, a_j)$ is a sample from a distribution whose mean value is $Q(x_i, a_j)$

each state x_i and action a_j has a distribution with the mean $Q(x_i,a_j)$

 $R(x_i, a_j)$ is a sample from a distribution whose mean value is $Q(x_i, a_j)$

each state x_i and action a_j has a distribution with the mean $Q(x_i, a_j)$

How to allocate rollouts to maximize the probability of selecting the action with the highest mean value, Q, at each of these N states?

 $R(x_i, a_j)$ is a sample from a distribution whose mean value is $Q(x_i, a_j)$

each state x_i and action a_j has a distribution with the mean $Q(x_i, a_j)$

How to allocate rollouts to maximize the probability of selecting the action with the highest mean value, Q, at each of these N states?

Multi-bandit Best Arm Identification

 $R(x_i, a_j)$ is a sample from a distribution whose mean value is $Q(x_i, a_j)$

each state x_i and action a_j has a distribution with the mean $Q(x_i, a_j)$

How to allocate rollouts to maximize the probability of selecting the action with the highest mean value, Q, at each of these N states?

Multi-bandit Best Arm Identification

GapE and GapE-V algorithms (Gabillon, MGH, Lazaric, NIPS-2011)

Outline

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples
Resource Allocation as Stochastic Multi-armed Bandit

Outline

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Production Line

Production Line

Given a fixed budget of tests

- ▶ Allocate these tests over the production lines, such that
- Estimate their average performance as accurate as possible

Test: run a production line and measure its performance

Online Advertisement

Online Advertisement – Online Polling

Given a fixed budget of ads

- ► Allocate this budget over several types of ads (products or services), *such that*
- Estimate their average preference as accurate as possible

There is a cost each time an ad is presented (e.g., web banner) to a random customer and her feedback is collected (customer clicks or not)

Clinical Trial

Clinical Trial

Given

- a fixed budget of clinical trials
- a number of subpopulations (patients with a particular gene biomarker)
- a number of available treatments for subjects from each subpopulation

Objective: construct a rule (from clinical trials) that recommends the best treatment for each of the subpopulations

Uniform Strategy

Uniform strategy:

- may waste the budget and have the risk of finding a bad treatment for a subpopulation
- more resources might be needed to find the best treatment for one subpopulation than the other

Outline

Overview

Sequential Decision-making under Uncertainty Reinforcement Learning Reinforcement Learning Algorithms

Classification-based Policy Iteration Algorithms An Algorithm – Direct Policy Iteration (DPI) Finite-sample Performance Analysis of DPI

Resource Allocation

Motivating Examples

Resource Allocation as Stochastic Multi-armed Bandit

Stochastic Multi-Armed Bandits

Setting

- Number of arms = K, Total number of pulls = budget = n
- ▶ each arm k is characterized by a distribution ν_k bounded in [0,1] with mean μ_k and variance σ_k^2
- \blacktriangleright at each round t, the algorithm pulls an arm I(t) and observes a sample $X_{I(t)}(t)\sim \nu_{I(t)}$

Pure Exploration (Bubeck et al. 2009; Audibert et al. 2010)

Output: at the end of round n, the algorithm returns J(n) some characteristics of the arms *(distributions)*

Objective: the returned characteristics of the arms *(distributions)* J(n) to be as accurate as possible

Pure Exploration (Bubeck et al. 2009; Audibert et al. 2010)

Output: at the end of round n, the algorithm returns J(n) some characteristics of the arms *(distributions)*

Objective: the returned characteristics of the arms *(distributions)* J(n) to be as accurate as possible

In the pure exploration setting

- the algorithm is evaluated only based on its final output
- exploration phase and evaluation phase are separated

Best Arm Identification - Extensions

- \blacktriangleright m-best arm identification: finding the set of m-optimal arms
- \blacktriangleright (m, ϵ) -best arm identification: finding the set of (m, ϵ) -optimal arms
- Fixed budget vs. Fixed confidence: design a forecaster capable of
 - Fixed budget: finding a set of (m, ϵ) -optimal arms with the largest possible confidence, given the fixed budget of n rounds
 - ▶ **Fixed confidence:** stopping as soon as possible and returning a set of (m, ϵ) -optimal arms with a desired (fixed) confidence

Best Arm Identification - Extensions

- \blacktriangleright m-best arm identification: finding the set of m-optimal arms
- \blacktriangleright (m, ϵ) -best arm identification: finding the set of (m, ϵ) -optimal arms
- Fixed budget vs. Fixed confidence: design a forecaster capable of
 - ▶ **Fixed budget:** finding a set of (m, ϵ) -optimal arms with the largest possible confidence, given the fixed budget of n rounds
 - **Fixed confidence:** stopping as soon as possible and returning a set of (m, ϵ) -optimal arms with a desired (fixed) confidence

UGapEb and UGapEc algorithms (Gabillon, MGH, Lazaric, NIPS-2012)

Thank you!!

we are looking for interns at Adobe Research

Mohammad Ghavamzadeh
mohammad.ghavamzadeh@inria.fr

