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Routing & Traffic Control
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Routing & Traffic Control
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Career Decisions
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Marketing & Finance

Marketing

Which ad to show to this customer???

Which ad has the highest probability 

to be clicked by this customer???

one-shot decision
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Sequential Decision-Making under Uncertainty

?

How Can I ... ?
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Play and Win a Game
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Move around in the Physical World (e.g. driving, navigation)
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. . . and many more
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Reinforcement Learning (RL)

Environment

I RL: A class of learning problems in which an agent interacts with
a dynamic, stochastic, and incompletely known environment

I Goal: Learn an action-selection strategy, or policy, to optimize
some measure of its long-term performance
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Reinforcement Learning (RL)

Environment

at

xt xt+1

rt

Agent’s Life x0 a0 r0 x1 a1 r1 . . . xt at rt xt+1︸ ︷︷ ︸
unit of experience

. . .

I Agent has incomplete knowledge about its environment

I Agent chooses actions so as to optimize some measure of its
long-term performance
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Overview Reinforcement Learning

Reinforcement Learning (RL)

Environment

I RL: A class of learning problems in which an agent interacts with
a dynamic, stochastic, and incompletely known environment

I Goal: Learn an action-selection strategy, or policy, to optimize
some measure of its long-term performance

I Interaction: Modeled as a MDP or a POMDP
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Markov Decision Process

MDP
I An MDP M is a tuple 〈X ,A, r, p, γ〉.

I The state space X is a bounded closed subset of Rd.

I The set of actions A is finite (|A| <∞).

I The reward function r : X ×A → R is bounded by Rmax.

I The transition model p(·|x, a) is a distribution over X .

I γ ∈ (0, 1) is a discount factor.

I Policy: a mapping from states to actions π(x) ∈ A
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Value Function

For a policy π

I Value function V π : X → R

V π(x) = E

[ ∞∑

t=0

γtr
(
Xt, π(Xt)

)
| X0 = x, π

]

I Action-value function Qπ : X ×A → R

Qπ(x, a) = E

[ ∞∑

t=0

γtr(Xt, At) | X0 = x, A0 = a, π

]
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Optimal Value Function and Optimal Policy

I Optimal value function

V ∗(x) = sup
π
V π(x) ∀x ∈ X

I Optimal action-value function

Q∗(x, a) = sup
π
Qπ(x, a) ∀x ∈ X , ∀a ∈ A

I A policy π is optimal if

V π(x) = V ∗(x) ∀x ∈ X
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Overview Reinforcement Learning Algorithms

Dynamic Programming Algorithms
Policy Iteration

I start with an arbitrary policy π0

I at each iteration k
I Policy Evaluation: Compute Qπk

I Policy Improvement: Compute the greedy policy w.r.t. Qπk

πk+1(x) = (Gπk)(x) = arg max
a∈A

Qπk(x, a) ∀x ∈ X

* G is called the greedy policy operator

* the new policy resulted from the application of G is no worse than the old one

πk+1 = Gπk −→ V πk+1 ≥ V πk
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What will happen if we cannot compute Qπk?
Compute Q̂πk ≈ Qπk instead

Why?

I state space X and/or action space A are large or infinite

I not enough time to compute Qπk

I model of the system (transitions p and rewards r) is unknown

I not enough samples to compute Qπk
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Approximate Dynamic Programming
&

Reinforcement Learning
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Approximate Dynamic Programming Algorithms

Approximate Policy Iteration
I start with an arbitrary policy π0

I at each iteration k
I Policy Evaluation: Compute Q̂πk Q̂πk ≈ Qπk

I Policy Improvement: Compute the greedy policy w.r.t. Q̂πk

πk+1(x) = arg max
a∈A

Q̂πk(x, a) ∀x ∈ X

πk+1(x) = arg max
a∈A

Q̂πk(x, a) 6= (Gπk)(x) −→ V πk+1
?
≥ V πk
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Classification-based Policy Iteration Algorithms

Value-based (Approximate) Policy Iteration

Policy

π

Approximate vf

Improvement

Q̃π(·, ·)

π̃ = argmaxa Q̃(·, a)

Rollout Estimate

Training Set

Q̂π(xi, a)

D = {(xi, a), Q̂π(xi, a)}

Q̃π = learn(D,F)

Regression

xi ∼ ρ
Samples

* We use Monte-Carlo estimation for illustration purposes
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Classification-based Policy Iteration

Policy

π

π̃ = learn(D,Π)

Classification

No explicit

approximation

Rollout Estimate

Q̂π(xi, a)

Training Set

D = {xi, arg maxa Q̂
π(xi, a)}

Samples

xi ∼ ρ

* The idea first introduced by Lagoudakis & Parr (2003) and Fern et al. (2004)
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Value-based vs Classification-based Policy Iteration

Policy

π

Approximate vf

Improvement

Q̃π(·, ·)

π̃ = argmaxa Q̃(·, a)

Rollout Estimate

Training Set

Q̂π(xi, a)

D = {(xi, a), Q̂π(xi, a)}

Q̃π = learn(D,F)

Regression

xi ∼ ρ
Samples Policy

π

π̃ = learn(D,Π)

Classification

No explicit

approximation

Rollout Estimate

Q̂π(xi, a)

Training Set

D = {xi, arg maxa Q̂
π(xi, a)}

Samples

xi ∼ ρ
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Classification-based Policy Iteration Algorithms

Appealing Properties

I Property 1. More important to have a policy with a
performance similar to the greedy policy w.r.t. Qπk than an
accurate approximation of Qπk

I Property 2. In some problems good policies are easier to
represent and learn than their corresponding value functions

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Classification-based Policy Iteration Algorithms

Tetris
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Template of the Algorithm

Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and return

R
πk
j (xi, a) = r(xi, a) +

H−1∑
t=1

γtr
(
xt, πk(xt)

)
,

with xt ∼ p
(
· |xt−1, πk(xt−1)

)
and x1 ∼ p(·|xi, a)

end for
Q̂πk (xi, a) = 1

M

∑M
j=1 R

πk
j (xi, a)

end for
πk+1 = arg minπ∈Π L̂πk (ρ̂ ;π) (classifier)

end for
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M
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Template of the Algorithm
Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and return

R
πk
j (xi, a) = r(xi, a) +

H−1∑
t=1

γtr
(
xt, πk(xt)

)
,

with xt ∼ p
(
· |xt−1, πk(xt−1)

)
and x1 ∼ p(·|xi, a)

end for
Q̂πk (xi, a) = 1

M

∑M
j=1 R

πk
j (xi, a)

end for
πk+1 = arg minπ∈Π L̂πk (ρ̂ ;π) (classifier)

end for

* How to select the sampling distribution ρ?

** Can we use the same set of samples for all iterations? yes (more complex analysis)
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Template of the Algorithm
Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and return

R
πk
j (xi, a) = r(xi, a) +
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γtr
(
xt, πk(xt)

)
,

with xt ∼ p
(
· |xt−1, πk(xt−1)

)
and x1 ∼ p(·|xi, a)

end for
Q̂πk (xi, a) = 1

M

∑M
j=1 R

πk
j (xi, a)

end for
πk+1 = arg minπ∈Π L̂πk (ρ̂ ;π) (classifier)

end for

* How to select the sampling distribution ρ?

** Can we use the same set of samples for all iterations?

yes (more complex analysis)
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Template of the Algorithm
Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
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Template of the Algorithm
Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do
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M
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end for

* rollouts are allocated uniformly over x ∈ Dk and a ∈ A. Other possibilities?
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Template of the Algorithm

Input: policy space Π, state distribution ρ, number of rollout states N , number of
rollouts per state-action pair M , rollout horizon H
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and return

R
πk
j (xi, a) = r(xi, a) +

H−1∑
t=1

γtr
(
xt, πk(xt)

)
,

with xt ∼ p
(
· |xt−1, πk(xt−1)

)
and x1 ∼ p(·|xi, a)
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Gap-based Loss

I Empirical Gap-based Error

L̂πk(ρ̂;π) =
1

N

N∑

i=1

[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]
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Gap-based Loss

I Empirical Gap-based Error

L̂πk(ρ̂;π) =
1

N

N∑

i=1

[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]

* ρ̂ : empirical distribution induced by Dk
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Gap-based Loss

I Empirical Gap-based Error

L̂πk(ρ̂;π) =
1

N

N∑

i=1

[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]

* ρ̂ : empirical distribution induced by Dk

** Q̂πk (xi, a) : rollout estimation of Qπk (xi, a)
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Gap-based Loss

I True Gap-based Error

Lπk(ρ;π) = Ex∼ρ
[
max
a∈A

Qπk(x, a)−Qπk
(
x, π(x)

)]
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Gap-based vs. Mistake-based Errors

I Gap-based Error (weighted loss)

Lπk (ρ;π) = Ex∼ρ
[
max
a∈A

Qπk (x, a)−Qπk
(
x, π(x)

)]
=

∫
X

I
{
π(x) 6= arg max

a∈A
Qπk (x, a)

}
︸ ︷︷ ︸

mistake

[
max
a∈A

Qπk (x, a)−Qπk
(
x, π(x)

)]
︸ ︷︷ ︸

cost/regret

ρ(dx)

I Mistake-based Error (0/1 loss)

Lπk (ρ;π) = Ex∼ρ
[
I
{
π(x) 6= (Gπk)(x)

}]
=

∫
X

I
{
π(x) 6= arg max

a∈A
Qπk (x, a)

}
︸ ︷︷ ︸

mistake

ρ(dx)
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Error at each Iteration (DPI)

DPI
Budget = B

Policy Space = Π
πk+1 ≈ Gπk

Error at iteration k

||πk+1 − Gπk||1,ρ ≤ f(B,Π, δ) w.p. 1− δ
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Error at each Iteration (DPI)

DPI
Budget = B

Policy Space = Π
πk+1 ≈ Gπk

Error at iteration k

||πk+1 − Gπk||1,ρ = Lπk(ρ ;πk+1) ≤ f(B,Π, δ) w.p. 1− δ
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Bound on the Error at each Iteration
Theorem
Let Π be a policy space with h = V C(Π) <∞ and ρ be a distribution
over X . Let N be the number of states in Dk drawn i.i.d. from ρ, H be
the rollout horizon, and M be the number of rollouts per state-action
pair. Let

πk+1 = arg min
π∈Π

L̂πk
(ρ̂ ;π)

be the policy computed at the k’th iteration of DPI . Then, for any δ > 0

Lπk
(ρ ;πk+1) ≤ inf

π∈Π
Lπk

(ρ ;π) + 2(ε1 + ε2 + γHQmax),

with probability 1− δ, where

ε1 = 16Qmax

√
2

N

(
h log

eN

h
+ log

32

δ

)
and ε2 = (1−γH)Qmax

√
2

MN
log

4|A|
δ

.
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Remarks

Lπk(ρ;πk+1) ≤ inf
π∈Π
Lπk(ρ;π)

︸ ︷︷ ︸
approximation error

+ 2
(
ε1(N)+ε2(N,M,H)+γHQmax

)

I approximation error: depends on how well the policy space Π
(classifier) can approximate the greedy policy Gπk

Π πk

Gπk

π

inf
π∈Π

Lπk
(ρ;π)
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Remarks

Lπk(ρ;πk+1) ≤ inf
π∈Π
Lπk(ρ;π)

︸ ︷︷ ︸
approximation error

+ 2
(
ε1(N) + ε2(N,M,H) + γHQmax

)
︸ ︷︷ ︸

estimation error

I estimation error

ε1 = 16Qmax

√
2

N

(
h log

eN

h
+ log

32

δ

)
ε2 = (1− γH)Qmax

√
2

MN
log

4|A|
δ

I avoid overfitting (ε1): take N � h

I fixed budget of rollouts B =MN : take M = 1 and N = B

I fixed budget B =MNH and M = 1: take O( logB
log 1/γ

) and N = O(B/H)

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Classification-based Policy Iteration Algorithms Finite-sample Performance Analysis of DPI

Remarks

Lπk(ρ;πk+1) ≤ inf
π∈Π
Lπk(ρ;π)

︸ ︷︷ ︸
approximation error

+ 2
(
ε1(N) + ε2(N,M,H) + γHQmax

)
︸ ︷︷ ︸

estimation error

I estimation error

ε1 = 16Qmax

√
2

N

(
h log

eN

h
+ log

32

δ

)
ε2 = (1− γH)Qmax

√
2

MN
log

4|A|
δ

I avoid overfitting (ε1): take N � h

I fixed budget of rollouts B =MN : take M = 1 and N = B

I fixed budget B =MNH and M = 1: take O( logB
log 1/γ

) and N = O(B/H)

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Classification-based Policy Iteration Algorithms Finite-sample Performance Analysis of DPI

Remarks

Lπk(ρ;πk+1) ≤ inf
π∈Π
Lπk(ρ;π)

︸ ︷︷ ︸
approximation error

+ 2
(
ε1(N) + ε2(N,M,H) + γHQmax

)
︸ ︷︷ ︸

estimation error

I estimation error

ε1 = 16Qmax

√
2

N

(
h log

eN

h
+ log

32

δ

)
ε2 = (1− γH)Qmax

√
2

MN
log

4|A|
δ

I avoid overfitting (ε1): take N � h

I fixed budget of rollouts B =MN : take M = 1 and N = B

I fixed budget B =MNH and M = 1: take O( logB
log 1/γ

) and N = O(B/H)

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Classification-based Policy Iteration Algorithms Finite-sample Performance Analysis of DPI

Proof

Main steps

I Bound on Lπk
(ρ ;πk+1)− Lπk

(ρ̂ ;πk+1) using a VC-bound ε1

I Replace Qπk(xi, a) with Qπk

H (xi, a) γHQmax

I Bound on Q̂πk(xi, a)−Qπk

H (xi, a) using Chernoff-Hoeffding ε2

I πk+1 minimizes the empirical error L̂πk
(ρ̂;π)
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Error Propagation
&

Final Performance Bound
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Final Performance Bound

Final Objective: Bound the error after K iteration of the alg.

||V ∗ − V πK ||1,µ ≤ f(B,Π, δ,K) w.p. 1− δ

πK is the policy computed by the algorithm after K iterations

Error Propagation: How the error at each iteration ||πk+1−Gπk||1,ρ
propagates through the iterations of the algorithm
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Pointwise Error Propagation

Lemma
Let πk, πk+1, and πK be the policies learned by DPI at iterations
k, k + 1, and K, then we have

V ∗ − V πK ≤ (γP ∗)K(V ∗ − V π0) +

K−1∑

k=0

(γP ∗)K−k−1Ek `πk(πk+1)

where Ek = (I − γP πk+1)−1 and

`πk(x;πk+1) = max
a∈A

Qπk(x, a)−Qπk
(
x, π(x)

)
, ∀x ∈ X .
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DPI Final Performance Bound
Theorem

Let Π be a policy space with VC-dimension h and πK be the policy
generated by DPI after K iterations. Then, for any δ > 0

||V ∗−V πK ||1,µ ≤
1

(1− γ)2
Cµ,ρ

(
d(Π,GΠ)+2(ε1+ε2+γHQmax)

)
+2γKQmax (A1)

with probability 1− δ, where

ε1 = 16Qmax

√
2

N

(
h log

eN

h
+ log

32K

δ

)
and

ε2 = (1− γH)Qmax

√
2

MN
log

4|A|K
δ

.
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Concentrability Coefficient

For any policy π ∈ Π and any non-negative integers s and t, there
exists a constant Cµ,ρ(s, t) <∞ such that

µ(P ∗)s(P π)t ≤ Cµ,ρ(s, t) ρ

We define

Cµ,ρ = (1− γ)2
∞∑

s=0

∞∑

t=0

γs+tCµ,ρ(s, t)
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Approximation Error

Π π π′

Gπ

inf
π′∈Π

Lπ(ρ;π
′)

Inherent Greedy Error d(Π,GΠ) = supπ∈Π infπ′∈Π Lπ(ρ ;π′)
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An Open Question?
Q. rollouts are allocated uniformly over x ∈ Dk and a ∈ A

How to allocate a fixed budget of rollouts over x ∈ Dk and a ∈ A in
order to have an accurate training set for the classifier???

uniform allocation can be wasteful

Qπk(x1, a1)

Qπk(x1, a2)

State x1

Qπk(x2, a2)Qπk(x2, a1)

State x2

A. adaptive resource allocation
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x1 xNxi. . . . . .
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x1 xNxi

a1 aj
aM

. . . . . .
a1 aj

aM a1 aj
aM
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Given a fixed budget of rollouts B

x1 xNxi

a1 aj
aM

. . . . . .
a1 aj

aM a1 aj
aM

R(xi, a1) R(xi, aj) R(xi, aM )

R(xi, aj) is a sample from a distribution whose mean value is Q(xi, aj)

each state xi and action aj has a distribution with the mean Q(xi, aj)

How to allocate rollouts to maximize the probability of selecting the
action with the highest mean value, Q, at each of these N states?

Multi-bandit Best Arm Identification

GapE and GapE-V algorithms (Gabillon, MGH, Lazaric, NIPS-2011)
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Production Line
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Resource Allocation Motivating Examples

Production Line

Given a fixed budget of tests

I Allocate these tests over the production lines, such that

I Estimate their average performance as accurate as possible

Test: run a production line and measure its performance
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Online Advertisement
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Online Advertisement – Online Polling

Given a fixed budget of ads

I Allocate this budget over several types of ads (products or
services), such that

I Estimate their average preference as accurate as possible

There is a cost each time an ad is presented (e.g., web banner) to a
random customer and her feedback is collected (customer clicks or not)
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Clinical Trial
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Resource Allocation Motivating Examples

Clinical Trial

Given
I a fixed budget of clinical trials
I a number of subpopulations (patients with a particular gene biomarker)

I a number of available treatments for subjects from each
subpopulation

Objective: construct a rule (from clinical trials) that recommends the best
treatment for each of the subpopulations
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Uniform Strategy

Uniform strategy:

I may waste the budget and have the risk of finding a bad treatment
for a subpopulation

I more resources might be needed to find the best treatment for one
subpopulation than the other
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Stochastic Multi-Armed Bandits

Setting

I Number of arms = K , Total number of pulls = budget = n

I each arm k is characterized by a distribution νk bounded in [0, 1]
with mean µk and variance σ2

k

I at each round t, the algorithm pulls an arm I(t) and observes a
sample XI(t)(t) ∼ νI(t)
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Pure Exploration (Bubeck et al. 2009; Audibert et al. 2010)

Output: at the end of round n, the algorithm returns J(n) some
characteristics of the arms (distributions)

Objective: the returned characteristics of the arms (distributions) J(n)

to be as accurate as possible

In the pure exploration setting

I the algorithm is evaluated only based on its final output
I exploration phase and evaluation phase are separated
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Best Arm Identification - Extensions

I m-best arm identification: finding the set of m-optimal arms

I (m, ε)-best arm identification: finding the set of (m, ε)-optimal arms

I Fixed budget vs. Fixed confidence: design a forecaster capable of

I Fixed budget: finding a set of (m, ε)-optimal arms with the
largest possible confidence, given the fixed budget of n rounds

I Fixed confidence: stopping as soon as possible and returning
a set of (m, ε)-optimal arms with a desired (fixed) confidence

UGapEb and UGapEc algorithms (Gabillon, MGH, Lazaric, NIPS-2012)

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Resource Allocation Resource Allocation as Stochastic Multi-armed Bandit

Best Arm Identification - Extensions

I m-best arm identification: finding the set of m-optimal arms

I (m, ε)-best arm identification: finding the set of (m, ε)-optimal arms

I Fixed budget vs. Fixed confidence: design a forecaster capable of

I Fixed budget: finding a set of (m, ε)-optimal arms with the
largest possible confidence, given the fixed budget of n rounds

I Fixed confidence: stopping as soon as possible and returning
a set of (m, ε)-optimal arms with a desired (fixed) confidence

UGapEb and UGapEc algorithms (Gabillon, MGH, Lazaric, NIPS-2012)

M. Ghavamzadeh – Sample Complexity of Classification-based PI Algs.



Thank you!!

we are looking for interns at Adobe Research

Mohammad Ghavamzadeh

mohammad.ghavamzadeh@inria.fr


	Overview
	Sequential Decision-making under Uncertainty
	Reinforcement Learning
	Reinforcement Learning Algorithms

	Classification-based Policy Iteration Algorithms
	An Algorithm – Direct Policy Iteration (DPI)
	Finite-sample Performance Analysis of DPI

	Resource Allocation
	Motivating Examples
	Resource Allocation as Stochastic Multi-armed Bandit


