Chapter 1: Fundamental Principles

Roadmap for 15¢ chapter:
* Why AE need fluid mechanics?

 Introductory concepts

e Forces & moments

e Center of pressure

e Types of flow
 Dimensional analysis
 Flow similarity

 Fluid statics



Why study Fluid Mechanics?

Fluid Mechanics 1s key to many problems aerospace engineers
face.

Aerospace engineers need to predict and control

* Forces & moments (acting on bodies moving relative to a fluid)
e Rates of heat transfer (between a body and fluid)

Historical examples

- evaluation of ship resistance

- Wright brothers's experiments to design a new wing

- blunt re-entry body
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Fluid Mechanics 1in
Aerospace System Design

What are two main equations of aerospace engineering?

Aircraft:

Rockets:
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Other examples:

airplane lift and drag combustion

.h ‘

Temperature distribution within the combustion chamber. Two successive
combustions followed by a quick dilution reduce significantly NOx emissions

Scale model of fighter aircraft in wind tunnel. (ONERA)

(NASA)

heating

IR image of a landing space shuttle Temperature contours on a transonic turbine rotor (NASA)
(Inframetrics)
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Interdisciplinary problems

- fluid & structures

e Tail buffet
e Flutter
e Cavity noise (acoustic loading)
- fluid & propulsion
e Scramjet inlet

e Rocket nozzles

* Powered lift systems (over-the-wing blowing/ flaps) (high
l1ft, low noise) for V/STOL aircraft

- fluids & controls

e Control stall of compressors
e Vortex generators (avoid stall, tail buffet)

1-5 ¢ Reduce drag due to turbulence by active control



Introductory Concepts

Fluid: A substance that continuously when a shear force 1s
applied.

Solid: A substance that an applied shear force by static
deformation.

2 types of fluids:

Liquid: A fluid in which the molecules are relatively close together
and 1nteract strongly; 1t will take the shape of container but
maintains a constant volume.

Gas: A fluid 1in which the molecules are widely spaced and interact
only briefly. A gas will take the shape of a container and expand to
fill the entire volume.

In air at standard atmosphere conditions the spacing between molecules 1s 10 times
1_darger than the molecular diameter (d~4 x10™"’ m).



Hydrodynamics: flow of

Gas dynamics: flow of

Aerodynamics: flow of
- external

- Internal

Continuum Hypothesis

Treat the fluid as a continuous medium rather than being made up of
molecules separated by void.

Continuum hypothesis 1s valid when mean free path of molecules 1s
negligible compared to the characteristic size of the flow problem.
Continuum hypothesis 1s about fluid flows not fluids!
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For air at 1 atmosphere and room temperature: mfp~ 60 nm.

For most acrodynamic flows of interest, characteristic size>>mfip.
Continuum hypothesis fails for:

e Low-pressure (vacuum) systems

e High-altitude (above 100 km) flight

e Flows 1n micro/nanodevices

We will only consider continuum flows in AAE333. Non-
continuum flows: AAE519, AAE590D.

For continuum fluid flows, we assume that fluid properties vary
continuously 1n space.

Q: What are the most important fluid properties?
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Fundamental Variables:

Pressure(p): normal force per unit area due to molecular motion
Let:

dA = surface element

dF= normal force on dA

p:
density(p): =

where = volume element, = mass of

Temperature (T) = directly proportional to kinetic energy of fluid
molecules
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velocity (V) for a fluid element can vary from point to point;
velocity 1t 1s a vector

streamline: the path of a fluid element (fixed for steady flow)
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Forces & Moments

Pressure 1s a scalar

Pressure force acts perpendicular to any given surface
Pressure has no direction — surface has

solid surface in the fluid ;/l/v
"
v / ./F// /
A/r ///
Assume a body moving relative to a fluid l
—»
1. Pressure force ( to surface)
2. Viscous force ( to surface) due to transfer of momentum

due to molecular motion in the presence of a velocity gradient

1-11 =viscosity coefficient



Forces on a Body

L=Lift:  force
D= Drag: force
R= Resultant (total) force R=
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2-D Flow:

If: 1) no variation in the z direction
2) no velocity in the z direction
2-D flow corresponds to a wing of infinite span;
3-D effects at the tips
Denote
L'D"R'": {forces/unit span (N/m)
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Airfoil nomenclature (Anderson, Ch. 4)

Leading edge (LE)

Trailing edge (TE)
Chord (¢)
Thickness (t)

Mean camber line

1.14Camber



Forces on airfoil

TE= trailing edge, LE=leading edge
1.4&= chord length, =angle of attack



Forces: R’ =
L' =
N' =
A=
D' =

DI
LI

rotation matrix

r—

f—
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force/unit span

force/unit span

force/unit span
force/unit span

force/unit span
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Calculation of N and A4’ from pressure and shear stress
distriblitions.

: upper surface : lower surface : outward normal
: surface inclination angle

1.q7 - arclength . differential s



upper surface:

dA,'=( )ds,
Ep dN,'=(—p,cos0—T,sin0)ds,
ds [4
lower surface:
i dA,"=(p,sin 0+ 71,cos0)ds,
K dN,"'=( )ds,
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ds dx=cos 0ds
dy=—sm0ds
dy _
dx
dN,=(—p,cos0—T sin0)ds =
d
=(—p,+T, C;;”)dx
. . . , d
Similarly: dN,Z(pZ-FTlﬁ)dX
dx
, d ,
dA =(p Zrix)dx  dA
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Integrate over the chord from LE (x=0) to TE (x=c):

, C , C , C C i d d
NZ{dNu—I—{dNZ:{(pZ—pu)dx—l—{-Tu df:ﬂl dfcf dx

A=[da+[da= pudyu_p% dx+f T 1) dy
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Aerodynamic moment — moment of the resultant force on the

airfoil (or wing) around a reference axis parallel to spanwise
direction

The moment tends to change the angle of attack. Also called
pitching moment. (+)

Sign convention: positive moment 1s pitch up (increases angle
of attack)

Reference axis can be placed 1n different locations, e.g. LE,
quarter-chord, half-chord, and so on. Notations:
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Moment around LE: (+)

upper surface: d M,=—xdN, +ydd,=
lower surface: d M,=—xd N,+ydA,=

Integrate: ¢ T
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Center of Pressure 4

@/&__...\

= location along the chord where the resultant force can be applied
to produce the same moment as the distributed load.

for small .

Moment can be taken about any point e.g, ¢/4

(for thin symmetric airfoils xcp=c/4)
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Example: (Anderson, Problem 1.3)

Consider an infinitely thin flat plate of chord ¢ at an angle of attack o 1n a
supersonic flow. The pressure on the upper and lower surfaces are
different but constant over each surface; thatis p,(s)=c, andp,(s)=c,
where ¢, and ¢, are constants and ¢,>c¢, . Ignoring the shear
stress, calculate the location of the center of pressure.
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Non-dimensionalization

for comparison of different designs
for scaling of wind tunnel tests to full scale

dynamic pressure: (force/area)
(specific kinetic energy of free stream)

Let S =reference area, [=reference length
L

Define: CL:R - lift coefficient
Cazi - dra fficient
S g coefficien
C le - moment coefficient
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C — N - normal force coefticient
N qooS
CAZL - axi1al force coefficient
Y
2-D force coefficients: (S=c-1=c¢)
c,= L c-l)’ _M’
: qooc ! qooc Cm_QooC2
Similarly we can define ¢, and c,
_ P~ P
Cp— q
Cf —

q
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Previous eqs for N'and A" can be non-dimen-
sionalized to obtain ¢, c¢ and ¢ 1n terms of Cp, >
n a m

C

c,,l:%-{(cp,,—cpu dx+i cfucgc + f,cgcl dx

c=%{ cp,u%—cp,,cg: dx+j(cf,u+cf,l)dx

cmLEzéi(CP,u—cw)xdx—i :cf,u ?;C”Jrcf’l%:xdx
—I—i -cp’u%—l—cf’u-yudx—ki | c, l%—l—c -yldx
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Specifying reference areas and lengths

Streamline bodies: drag due mostly to

/P/\p\
) S T T T
A\/F—’

High/low drag

Bluff bodies= drag due mostly to

> % (separation)

low p

High/low drag
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For streamlined bodies:

3-D S= planform area, 1= mean chord
2-D S= chord (1), 1= chord

for bluff bodies

3-D  S=

2-D  S=
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Typical values of ¢, ¢, Airfouls:

c, = 1.5 -2.0 (single element)
=4 (multi-element)
» ‘N
stall
Bluft bodies: L
flat plate ——%—-
N

cylinder
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Two important non-dimensional numbers:

Reynolds number: Re=

P=density F=velocity L=characteristic length

JU= viscosity coefficient

Mach number : M=

a= speed of sound
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Types of Flow

Continuum vs free molecular flow

mean free path
at sea level
at 100 km

Knudsen number: Kn=
[AAE 519, AAE590D]
1f Kn<0.01 continuum flow

0.0l <Kn<10 rarefied

Kn> 10 free molecule
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Incompressible vs compressible flow

if M<0.3 then 1s nearly constant
incompressible flow (AAE 333)

for compressible flow, Mach # regimes:

M<I1 everywhere M. <0.8

M<]
M>1

regions 0.8<M_<1.2

M>1 everywhere M, >1.2

M_>5
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Inviscid vs viscous flow

inviscid flow 1s 1deal

for high Re# viscous effects can be limited to thin
regions near a body (boundary layers), except when
separation occurs

inviscid flow assumption predicts drag =O0.
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Some Practical Issues

Remember:
Blunt body= body where most of the drag 1s
Streamlined body = body where most of the drag 1s

Blunt bodies have a much higher C_than streamlined bodies.

The skin friction coetficient C_1s higher for turbulent flows than

laminar flows because velocity profile 1s flatter:

Explain: golf ball dipples, old baseball have smaller drag
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Buckingham Pi Theorem

The name P1 comes from the mathematical notation //, meaning a
product of variables.

Principle of Dimensional Homogeneity (PDH):

Any equation describing a physical situation will only be true if
both sides have the same units.

The Buckingham Pi1 Theorem states:

If a physical process satisfies PDH and involves N dimensional
variables, it can be reduced to N-K non-dimensional variables or
IIs. The reduction K is equal to the maximum number of variables
that do not form a 1l among themselves and is always less than or
equal to the number of fundamental units (mass, length, time, etc)
describing the variables.
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Method of repeating variables 1s based on the application of
Buckingham P1 theorem to determine the non-dimensional
parameters that can be formed from a group of dimensional
variables describing a physical process.

Step 1) Come up with a list of N dimensional variables P] that

describe the process and are related by some unknown
functional relation: £ 1( P P, .., PN):()

Step 2) Let K be the number of fundamental units needed to
describe the N dimensional variables. The fundamental units are
mass, length, time, temperature and so on.

Step 3) Choose K of the dimensional variables to be repeating
variables such that the K fundamental units can be all formed
by some combination of the repeating variables and no non-
dimensional parameters can be formed from the set of repeating
variables.
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Step 4) Form N-K dimensionless Pi products by multiplying the K
repeating variable, as follows

_ D% pYn d ik

The exponents a_are determined so that I/ are non-dimensional.
ij i

The Buckingham Pi1 theorem then states that the N — K P1 products
are related by some functional relationship:

fz(H 1,H2,--- , HN—K):O

The advantage of using the Buckingham P1 theorem 1s that it can
greatly reduce the number of parameters one has to deal with.
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Example: Force coefficient (2-D)

Based on physical intuition we expect the resultant force vector
for a given 2-D shape to depend on:

Fluid density Freestream velocity

Body size (chord) Viscosity Speed of sound

Therefore the magnitude of the resultant force per unit span 1s

R'=f(pn, Vs Cly,dy)
Or as

The Buckingham Pi theorem will tell us how many
parameters we can form from this set of variables.
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Follow the steps outlined above to find the non-dimensional
parameters [/

l

Step 1: The dimensional variables are

R’) poo) VOO)C)IJOO’aOO
SO N=

Step 2: What are the fundamental units needed?

Denote m=mass, [=length, =time.

R= 1 ]=
Pl [a,]=
V)=



Step 3: Choose K repeating variables from among the
N dimensional variables. We don’t want to choose R’
because 1t 1s the variable of interest. We don’t want to
choose both a and V. because their ratio 1s a non-

dimensional parameter.

Choose the following as repeating variables: p..V..c.

Check that we can represent each of the fundamental
units with this set of variables:

mass:
time:
length:
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Step 4: Form the non-dimensional products.
Let lepglng Ca13R /

1T, 1s dimensionless, so each exponent must be zero:

This 1s almost the same as the force coefficient except for a
factor of 2. Since multiplying by a number doesn’t change the
units of /7, let R’

I1,= |

EDOOVfoC
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Ay, dy

Let 1_12:‘)3!021 v C Ho

For HZ to be non-dimensional we need:

Thus, II,= L Similarly, we obtain ] = Lz

P V o€ N
The statement that we started with

o0

can be rewritten as R'=f(p,, V. c N, a,)

| |
Re, M,

CR':f1< )

1-44



Dynamic Similarity

Approaches for experimental testing:
* Flight testing [expensive]
e Full scale wind tunnel testing
(80" x 120" at NASA Ames; V' =150 mph)

m

[st1ll expensive]
* Scaled model testing

A C

e— L1 —> |<—L2—>|
Conditions for dynamic similarity
1) Bodies are similar (scale model)
2) Governing parameters are the same
¢ D:f (Re, M)
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Example: ¢, on a sailplane.

O O

/ \
- —) _ #ﬂ
| : A4 2 —? | :
| | P
L 10m - L
] atm 1 atm
Find VOO2
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1-47

V- Ver 10mls

o = =0.03
a,, 340mls

For incompressible tflow c¢_=f(Re).

Vool
VooZ

p
ReoolzReOO2=>( -1

P,

L,
L

2

>V_,=10V_,=100ml/s.

Check Mach number for the model:



Example: ¢ on an airliner.

Prototype: Model:

L=50m L=5m

Altitude 1s 10 km At sea level

M _=0.8 (transonic)

p_=0.413 kg/m3 p_=1.226 kg/m3

u =1.447x107 kg/m s u =1.78x10" kg/m s
a_=299 m/s a =340 m/s

First, find freestream velocity of the prototype:
V =M a =239m/s. Needtomatch Mach numbers:

o0

Vo= = 272 m/s.

002
w1 Vo1 L VoL
Re, =227 212 _34%10°  Re,,=222 222 _9 410’

uool uool
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How can we increase the Re?
Increase L :  No, too expensive
Increase No, need to match
Increase

- 1ncrease p -(see example 1.5 in Anderson)
(pressurize the wind tunnel) expensive, dangerous
- reduce T (cryogenic facility)

expensive, difficult to mnstrument

- heavy gas

Increase u :

No clean answer what to do. Preferred approach:
M# simulation 1n one tunnel & Re# simulation 1n other.
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Source: National Facilities Study, Volume 2; Subsonic and Transonic Wind
Tunnel Complex, 1994.

Conventional
scale effects

-
—
—
—__—-
—
e

)
-
-
-

lLift loss

possible
Attachment-line
transition
Typical Wind
Tunnel Re f—
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Fluid Statics describes fluids at rest or in rigid-body motion, 1.e.
no relative motion between adjacent fluid layers.

Some aerostatics applications:
- blimps (non r1g1d airships) - science balloons

Purdue blimp (Prof. John Sullivan and team) Constellation of stratospheric balloons (NASA/Global Aerospace Corp.)

- hybrid airships (aerostatic/aecrodynamic lift)

o
L

Electric
Propellers’™

Aeroscraft is an aircraft that utilizes a combination of buoyant and dynamic lift and is designed to fly further (~10,000 miles) and lift
1-51 more(~ 500 tons) than any other craft today (Worldwide Aeros Corp)



Hydrostatic equation.

Fluid 1s static: no relative motion between adjacent
fluid layers.
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Force balance:

pdxdz—(p+dp)dxdz—(p-dxdydz) g=0

ap _ _

y 0g Hydrostatic equation
34

For liquids p =const. Let's integrate with respect to y:

dp=—pgdy = jdpz—jpgdy

Po Yo

P=Py—P&(Y—y,) Hydrostatic pressure
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Example 1: At what depth does p=2 atm?

pP=p,—PgYy (p=p_at y=0)

pP—r, —1.01xX10° N/m’
y=— = E 3 —=—10.3m
pg  (1X107kg/m”)(9.8m/s”)

Pressure on a diver at a depth of 100 ft 1s 3.95 atm.

pVi=pV,

v If the diver holds breath on ascent, the lung
P 3.05 volume would increase by a factor of 4.

Ve b
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Example 2: Find forces and

.

| moments on a dam.

alr

water | K
g¢wae

LSS S

Choose a coordinate system:

P~ Pa

T

*4

Y
>
= X

P=DPo—Pw&(Yy— )
s P=Dat P, 8(h—Y)

Yo=h,py=r,



Static equilibrium: > F =0, > M .=o0.

Y F, R+f )—p )W dy=0 =>
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th?t if fluid is a gas not a liquid? ( p # const )
P _

dy =—Pg
Ideal gas equation of state: P=pPRT

Assume 1'=T, (isothermal).

Substitute 5——£  into hydrostatic equation:
PTRT

0

ap ___ &
dy RT,

P

d Y
L-__& fdy —
p RT

| O)’1

e—a"q

ap g
L _—__°o Jy Integrate:
P RT, g

N
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g
RT,

In(p/p,)=— (y=—y) =

Lower stratosphere: T =216.7 °K (-56.5 °C=-69.6 'F)

2
co=—5—= -8 mls ~1.53%x107 =
RT, 296J/(kg-K)216.7K m
p=pe pressure drops to a half every 4.5 km

(2.8 miles)
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Force on a submerged body

Archimedes principle: Buoyancy force = weight of fluid

displaced by the body.
Example: an immersed sphere.

Net force:
Fy = Buoyancy force + gravitational force =
4 3 4 3
ZET[R pfg_gT[R P8

It p< p, = sphere rises
p.>P, = sphere sinks

p,= fluid density, p = sphere density
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Fluid rigid-body motion with constant acceleration.

Let a acceleration of fluid volume, g accel of gravity. We
need to add mass x accel. term 1n the force balance for a
fluid element. Hydrostatic equation takes form:

op _

ox PETP s or 1n vector form:
op S
@—pgy—pay V p=pg—pa

Example: Fluid in an accelerating box car:

A
—>

00 %
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(1) y-direction: 9P __ pg (gravity in neg. y-dir as before)

Y
(2) x-direction: g—p =—pa (inertial force in neg. x dir)
X
Integrate (1)p:—pgy+cl(x> e
Then substitute p into (2): d_xl =——pa

= plx,y)=—pax—pgy+c, C, depends on coordinate system

p=p, for the water free surface

@) @)

o —
j y:—ﬁx+ 0" Pa Free surface is a straight line
g Pg

Find slope: dy__a
dx g
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Fluid 1n solid-body rotation. Consider a spinning

cylindrical bucket with fluid. N
Vp=—pg—pa = O
L . ‘e
In cylindrical coordinates:

z-direction: 0 p

— 4 — X
Py PE

r-direction: £ — 0r 0O’
or

Integrate to find p=p(l’, Z)I

1-62



.
8 2 aC (7’)
“E_—npQr = 1V 2
or ' : or © ‘2
p=—pgz-|—pr—£22-|—c()
2 D

Find free surface: p=p /%///

O (Co_Pa) /////4/
= ZzZ= VT

28 pg

Free surface is a parabola.

Note: surface tension effects are neglected.
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Summary of Chapter 1

1 C c dyu dyl
c,=—||\|\c,,—c, Jdx+ )| |c, ——+c, ,—|dx
c{(p’l P { gy dx

1| dy, dy, C
c,=—|)|c, ,—/——c dx+ | (¢, ,+c, |dx
C .([( P gy Pl Iy .0[( f f,l)
c,=C,Cosx+c, sin & c,=—c,sInx+c,cos ™

B 1 C C dyu dyl
cmLE—?{(Cp u—cp’,)xdx—{ C; ”d_x+cf e xdx
0 dy ( dy,
+1|c ~+c dx+||—-c ——+c dx
{ Py fuyu { pldx flyl
M M
Center of pressure x, =———r~———"
)4 N L
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For dynamic similarity

- bodies must be geometrically similar

- non-dimensional similarity parameters must be equal
(usually Re, M).

¢, ¢, are equal

d,
Hydrostatic equation: d_f/ =—pP8g

For p=const.: p=constant—pgy

e Acceleration aq 1n x-direction: p=constant—pgy—pax
a constant— p,

surface (p=p ): y=——x+ (straight line)
a g p g
e Solid body rotation Withzangular speed £:
p=constant—p gy+p %QZ
2
surface (p=pa); y:l& 2 constant— p, (parabola)

2 g Pg
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