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Classification

f (x) predicts the category that x belongs to

f : RD → {1, . . . ,K}

f (x) is decided by the decision boundary

As an variant, f can also predict the probability distribution over
classes given x, f (x) = P(y |x). The category is predicted as

y∗ = arg max
k

P(y = k |x)

(Duda et al. Pattern Classification 2000)
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Regression

Predict real-valued output

f : RD → RM

Example: linear regression

y = wtx =
D∑

d=1

wdxd + w0

(Bengio et al. Deep Learning 2014)
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Training

Training: estimate the parameters of f from {(x(train)
i , y (train)

i )}
Decision boundary, parameters of P(y |x), and w in linear
regression

Optimize an objective function on the training set. It is a
performance measure on the training set and could be different
from that on the test set.

Mean squared error (MSE) for linear regression

MSEtrain =
1
N

∑
i

||wtx(train)
i − y (train)

i ||22

Cross entropy (CE) for classification

CEtrain =
1
N

∑
i

log P(y = y (train)
i |x(train)

i )

Why not use classification errors #{f (x(train)
i ) 6= y (train)

i }?
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Optimization

The choice of the objective function should be good for
optimization

Take linear regression as an example

5wMSEtrain = 0

⇒5w||X(train)w− y(train)||22 = 0

w = (X(train)tX(train))−1X(train)ty(train)

where X(train) = [x(train)
1 , . . . ,x(train)

N ] and y(train) = [y (train)
1 , . . . , y (train)

N ].
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Generalization

We care more about the performance of the model on new,
previously unseen examples

The training examples usually cannot cover all the possible input
configurations, so the learner has to generalize from the training
examples to new cases

Generalization error: the expected error over ALL examples

To obtain theoretical guarantees about generalization of a
machine learning algorithm, we assume all the samples are
drawn from a distribution p(x, y), and calculate generalization
error (GE) of a prediction function f by taking expectation over
p(x, y)

GEf =

∫
x,y

p(x, y)Error(f (x), y)
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Generalization

However, in practice, p(x, y) is unknow. We assess the
generalization performance with a test set {x(test)

i , y (test)
i }

Performancetest =
1
M

M∑
i=1

Error(f (x(test)
i ), y (test)

i )

We hope that both test examples and training examples are
drawn from p(x, y) of interest, although it is unknown
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Capacity

The ability of the learner (or called model) to discover a function
taken from a family of functions. Examples:

Linear predictor
y = wx + b

Quadratic predictor

y = w2x2 + w1x + b

Degree-10 polynomial predictor

y = b +
10∑

i=1

wix i

The latter family is richer, allowing to capture more complex
functions

Capacity can be measured by the number of training examples
{x(train)

i , y (train)
i } that the learner could always fit, no matter how

to change the values of x(train)
i and y (train)

i
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Underfitting

The learner cannot find a solution that fits training examples well

For example, use linear regression to fit training examples
{x(train)

i , y (train)
i } where y (train)

i is an quadratic function of x(train)
i

Underfitting means the learner cannot capture some important
aspects of the data

Reasons for underfitting happening

Model is not rich enough
Difficult to find the global optimum of the objective function on the
training set or easy to get stuck at local minimum
Limitation on the computation resources (not enough training
iterations of an iterative optimization procedure)

Underfitting commonly happens in deep learning with large
scale training data and could be even a more serious problem
than overfitting in some cases
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Overfitting

The learner fits the training data well, but loses the ability to
generalize well, i.e. it has small training error but larger
generalization error

A learner with large capacity tends to overfit

The family of functions is too large (compared with the size of the
training data) and it contains many functions which all fit the
training data well.
Without sufficient data, the learner cannot distinguish which one is
most appropriate and would make an arbitrary choice among
these apparently good solutions
A separate validation set helps to choose a more appropriate one
In most cases, data is contaminated by noise. The learner with
large capacity tends to describe random errors or noise instead of
the underlying models of data (classes)
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Overfitting

(Duda et al. Pattern Classification 2000)
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Occam’s Razor

The fundamental element of machine learning is the
trade-off between capacity and generalization

Occam’s Razor states that among competing functions that
could explains the training data, one should choose the “simpler”
one. Simplicity is the opposite of capacity.

Occam’s Razor suggests us pick the family of functions just
enough large enough to leave only one choice that fits well the
data.
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Optimal capacity

Difference between training error and generalization error
increases with the capacity of the learner

Generalization error is a U-shaped function of capacity

Optimal capacity capacity is associated with the transition from
underfitting to overfitting

One can use a validation set to monitor generalization error
empirically

Optimal capacity should increase with the number of training
examples
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Optimal capacity

Typical relationship between capacity and both training and generalization (or test)
error. As capacity increases, training error can be reduced, but the optimism
(difference between training and generalization error) increases. At some point, the
increase in optimism is larger than the decrease in training error (typically when the
training error is low and cannot go much lower), and we enter the overfitting regime,
where capacity is too large, above the optimal capacity. Before reaching optimal
capacity, we are in the underfitting regime.

(Bengio et al. Deep Learning 2014)
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Optimal capacity

As the number of training examples increases, optimal capacity (bold black) increases (we can afford a bigger and
more flexible model), and the associated generalization error (green bold) would decrease, eventually reaching the
(non-parametric) asymptotic error (green dashed line). If capacity was fixed (parametric setting), increasing the
number of training examples would also decrease generalization error (top red curve), but not as fast, and training
error would slowly increase (bottom red curve), so that both would meet at an asymptotic value (dashed red line)
corresponding to the best achievable solution in some class of learned functions.

(Bengio et al. Deep Learning 2014)
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Exercise question

In the figure above, the training data (10 black dots) were selected from a
quadratic function plus Gaussian noise, i.e., f (x) = w2x2 + w1x2 + b + ε where
p(ε) = N(0, σ2). The degree-10 polynomial fits the data perfectly. Which learner
should be chosen in order to better predict new examples? The second-order
function or the 10th degree function?

If the ten training examples were generated from a 10th degree polynomial plus
Gaussian noise, which learned should be chosen?

If the one million training examples were generated from a quadratic function
plus Gaussian noise, which learned should be chosen?
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How to reduce capacity?

Reduce the number of features

Reduce the number of independent parameters

Reduce the network size of deep models

Reduce the number of training iterations

Add regularization to the learner

. . .
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Curse of dimensionality

Why do we need to reduce the dimensionality of the feature
space?

(Duda et al. Pattern Classification 2000)
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Curse of dimensionality

The more training samples in each cell, the more robust the
classifier

The number of cells grows exponentially with the dimensionality
of the feature space. If each dimension is divided into three
intervals, the number of cells is N = 3D

Some cells are empty when the number of cells is very large!

(Duda et al. Pattern Classification 2000)
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Regularization

Equivalent to imposing a preference over the set of functions
that a learner can obtain as a solution

In Bayesian learning, it is reflected as a prior probability
distribution over the space of functions (or equivalently their
parameters) that the learn can assess

Regularization prevents overfitting by adding penalty for
complexity

Training a classifier/regressor is to minimize
Prediction error on the training set + regularization

Examples

The objective function for linear regression becomes

MSEtrain + regularization =
1
N

∑
i

(wtx(train)
i − y (train)

i )2 + λ||w||22

Multi-task learning, transfer learning, dropout, sparsity, pre-training
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Function estimation

We are interested in predicting y from input x and assume there exists
a function that describes the relationship between y and x, e.g.
y = f (x) + ε, where ε is random noise following certain distribution.

Prediction function f can be parametrized by a parameter vector θ.

Estimating f̂n from a training set Dn = {(x(train)
1 , y(train)

1 ), . . . , (x(train)
n , y(train)

n )} is
equivalent to estimating θ̂n from Dn.

Since Dn is randomly generated from a underlying distribution,
both θ̂ and f̂ are random variables (or vectors, or functions)
distributed according to some probability distributions.

The quality of estimation can be measured by bias and variance
compared with the “true” parameter vector θ or function f̂

With a better design of the parametric form of the function, the
learner could achieve low generalization error even with small
capacity

This design process typical involves domain knowledge
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Bias

bias(θ̂) = E(θ̂)− θ

where expectation is over all the train sets of size n sampled from the
underlying distribution

An estimator is called unbiased if E(θ̂) = θ

Example: Gaussian distribution. p(xi ; θ) = N (θ,Σ) and the
estimator is θ̂ = 1

n

∑n
i=1 x(train)

i

E(θ̂) = E

[
1
n

n∑
i=1

x(train)
i

]
=

1
n

n∑
i=1

E
[
x(train)

i

]
=

1
n

n∑
i=1

θ = θ

Xiaogang Wang Machine Learning Basics



cuhk

Variance

Var[θ̂] = E [(θ̂ − E [θ̂])2] = E [θ̂2]− E [θ̂]2

Variance typically decreases as the size of the train set
increases

Both bias and variance are the sources of estimation errors

MSE = E [(θ̂ − θ)2] = Bias(θ̂)2 + Var[θ̂]

Increasing the capacity of a learner may also increase variance,
although it has better chance to cover the true function
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Summary: issues to be concerned in machine learning

Effective optimization methods and models to address the
underfitting problem

How to balance the trade-off between capacity and
generalization?

How to effectively reduce capacity (which means also reducing
estimation variance) without increasing the bias much?

For machine learning with big training data, how to effectively
increase capacity to cover or get closer to the true function to be
estimated?
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Open discussion

Why does deep learning have different behavior than other
machine learning methods for large scale training?
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Discriminative model

Directly model P(y |x) and decision boundaries

Learn the discriminative functions gk (x)

y = arg max
k

gk (x)

In the linear case, gk (x) = wt
k x

P(y |x) can be estimated from the linear discriminant functions

P(y = j |x) =
ewt

j x∑K
k=1 ewt

k x

It is also called softmax function

Examples: SVM, boosting, K-nearest-neighbor
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Discriminative model

It is easier for discriminative models to fit data
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Discriminative model

Parameter θ = {wk} can be estimated from maximizing the data
likelihood

θ̂ = arg max
θ

P(Dn|θ) = arg max
θ

n∏
i=1

P(y (train)
n |x(train)

n , θ)

Maximum a posteriori (MAP) estimation

θ = arg max
θ

p(θ|Dn) = arg max
θ

log P(Dn|θ) + log p(θ)

According to the Bayes’ rule, i.e., p(θ|Dn) = P(Dn|θ)p(θ)/P(Dn),

θ = arg max
θ

log P(Dn|θ) + log p(θ)

θ = arg max
θ

n∑
i=1

log P(y (train)
n |x(train)

n , θ) + log p(θ)

prior p(θ) corresponds to a regularizer, e.g.

p(θ) = e−λ||θ||
2
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Generative model

Estimate the underlying class conditional probability densities
p(x|y = k) and then construct the classifier using the Bayesian decision
theory

P(y = k |x) = p(x|y = k)P(y = k)
p(x)

=
p(x|y = k)P(y = k)∑K

k′=1 p(x|y = k ′)P(y = k ′)

p(x|y) and P(y) are parameterized by θ

Prior P(y) can be used to model the dependency among predictions,
such as the segmentation labels of pixels or predictions of speech
sequences.

It is more difficult to model class conditional probability densities.
However, it also adds stronger regularization to model fitting, since the
learned model not only needs to predict class labels but also generate
the input data.

It is easier to add domain knowledge when desgining the models of
p(x|y)
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Supervised and unsupervised learning

Supervised learning: the goal is to use input-label pairs, (x, y) to
learn a function f that predicts a label (or a distribution over
labels) given the input, ŷ = f (x)

Unsupervised learning: no label or other target is provided. The
data consists of a set of examples x and the objective is to learn
about the statistical structure of x itself.

Weakly supervised learning: the training data contains (x, y)
pairs as in supervised learning, but the labels y are either
unreliably present (i.e. with missing values) or noisy (i.e. where
the label given is not the true label)
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Unsupervised learning

Find the “best” representation of data that reserves as much
information about x as possible while being “simpler” than x
Taking linear case as an example

x̃ = a0 +
d ′∑

i=1

aiei

Lower dimensional representation: d ′ < d
Sparse representation: the number of non-zero ai is small
Independent representation: disentangle the sources of variations
underlying the data distributions such that the dimensions of the
representation are statistically independent, i.e. ai and aj are
statistically independent

Deep learning is to learn data representation, but in a nonlinear
and hierarchical way
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Principal Component Analysis (PCA)

There are n d−dimensional samples x1, . . . ,xn.
PCA seeks a principal subspace spanned by d ′ (d ′ < d)
orthonormal vectors e1, . . . ,ed ′ , such that

the projected samples (x̃k = a0 +
∑d ′

i=1 akiei ) onto this
subspace has maximum variance; or equivalently
the mean squared distance between the samples and their
projections are minimized.
The projections {aki} are uncorrelated (i.e. independent if
data distribution is assumed as Gaussian distribution)

(Bengio et al. Deep Learning 2014)
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Formulation of PCA

arg max
{ei}

n∑
k=1

‖x̃k − x̄‖2

or

arg min
{ei}

n∑
k=1

‖xk − x̃k‖2

(‖xk − x̄‖2 = ‖xk − x̃k‖2 + ‖x̃k − x̄‖2)
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Zero- and One-Dimensional Representations by PCA

zero-dimensional representation: use a single vector x0 to
represent all the samples and minimize the squared-error
function

J0(x0) =
n∑

k=1

‖x0 − xk‖2

The solution is x0 = x̄ = 1
n
∑n

k=1 xk

One-dimensional representation: project the data to a line
running through the sample mean, x̃k = x̄ + ak1e1 and
minimize the squared-error criterion function

J1(a11, . . . ,an1,e1) =
n∑

k=1

‖x̃k − xk‖2
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Find the Principal Components ak1

J1(a11, . . . ,an1,e1)

=
n∑

k=1

‖(x̄ + ak1e1)− xk‖2 =
n∑

k=1

‖ak1e1 − (xk − x̄)‖2

=
n∑

k=1

a2
k1 ‖e1‖2 − 2

n∑
k=1

ak1et (xk − x̄) +
n∑

k=1

‖xk − x̄‖2

Since e1 is a unit vector, ‖e1‖ = 1. To minimize J1, set ∂J1
∂ak1

= 0
and we have

ak1 = et
1(xk − x̄)

We obtain a least-squares solution by projecting the vector
xk onto the line in the direction of e1 passing through the
mean.
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Find the Optimal Projection Direction e1

J1(e1) =
n∑

k=1

a2
k1 − 2

n∑
k=1

a2
k1 +

n∑
k=1

‖xk − x̄‖2

= −
n∑

k=1

[
et

1(xk − x̄)
]2

+
n∑

k=1

‖xk − x̄‖2

= −
n∑

k=1

et
1(xk − x̄)(xk − x̄)te1 +

n∑
k=1

‖xk − x̄‖2

= −et
1Se1 +

n∑
k=1

‖xk − x̄‖2

Xiaogang Wang Machine Learning Basics



cuhk

Find the Optimal Projection Direction e1

S =
∑n

k=1(xk − x̄)(xk − x̄)t is the scatter matrix
et

1Se1 =
∑n

k=1 a2
k1 (
∑n

k=1 ak1 = 0) is the variance of the
projected data
The vector e1 that minimizes J1 also maximizes et

1Se1,
subject to the constraint that ‖e1‖ = 1
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Lagrange Optimization

Seek the position x0 of an extremum of a scalar-valued
function f (x) subject to the constrain that g(x) = 0
First from the Lagrangian function

L(x, λ) = f (x) + λg(x)

where λ is a scalar called the Lagrange undetermined
multiplier.
Convert into an unconstrained problem by taking the
derivative,

∂L(x, λ)

∂x
=
∂f (x)

∂x
+ λ

∂g(x)

∂x
= 0

Solve x and λ considering g(x) = 0
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Find the Optimal Projection Direction e1

Use the method of Lagrange multipliers to maximize the
et

1Se1 subject to the constraint that ‖e1‖ = 1,

u = et
1Se1 − λ(et

1e1 − 1),

∂u
∂e1

= 2Se1 − 2λe1 = 0.

Setting the gradient vector equal to zero, we see that e1
must be an eigenvector of the scatter matrix

Se1 = λe1

Since et
1Se1 = λet

1e1 = λ, to maximize et
1Se1, we select

the eigenvector with the largest eigenvalue
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d ′-Dimensional Representation by PCA

d ′−dimensional representation: x̃k = x̄ +
∑d ′

i=1 akiei

Mean-squared criterion function:

Jd ′ =
n∑

k=1

∥∥∥∥∥
(

x̄ +
d ′∑

i=1

akiei

)
− xk

∥∥∥∥∥
2

Define additional principal components in an incremental
fashion by choosing each new direction minimizing J
amongst all possible directions orthogonal to those already
considered
To minimize Jd ′ , e1, . . . ,ed ′ are the d ′ eigenvectors of the
scatter matrix with the largest eigenvalues. aki are the
principal components of samples.
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d ′-Dimensional Representation by PCA

Since the scatter matrix is real and symmetric, its
eigenvectors are orthogonal and its eigenvalues are
nonnegative.
The squared error:

Jd ′ = −
d ′∑

i=1

λi +
n∑

k=1

‖xk − x̄‖2

Jd = 0⇒
n∑

k=1

‖xk − x̄‖2 =
d∑

i=1

λi

Jd ′ =
d∑

i=d ′+1

λi
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Variance of Data Captured by the PCA Subspace

The variance of data projected onto the first d ′

eigenvectors is
∑d ′

i=1 λi

Measure how much variance has been captured by the
first d ′ eigenvectors: ∑d ′

i=1 λi∑d
j=1 λj
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Covariance Matrix of Principal Components

The correlation between projections on ei and ej (i 6= j) is

n∑
k=1

akiakj =
n∑

k=1

et
i (xk − x̄)(xk − x̄)tej = et

i Sej = λiet
i ej = 0

The covariance matrix of samples in the PCA subspace is
diag[λ1, . . . , λd ′ ]
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Summary of PCA

The principal subspace is spanned by d ′ orthonormal vectors
e1, . . . ,ed ′ which are computed as the d ′ eigenvectors of the
scatter matrix S with the largest eigenvalues λ1, . . . , λd ′ .

The principal components aki of the samples are computed as
aki = et

i (xk − x̄)

The variance of the projected samples onto this principal
subspace is

∑d ′

i=1 = λi .

The mean squared disance between the samples and their
projections are

∑d
i=d ′+1 = λi .

PCA disentangles the factors of variation underlying the data,
assuming such variation is a Gaussian distribution

We are interested in learning representations that disentangle
more complicated forms of feature dependencies
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Smoothness Prior

Shallow models assume smoothness prior on the prediction function to
be learned, i.e.

f ∗(x) ≈ f ∗(x + ε)

where ε is a small change.

K-nearest neighbor predictors assume piecewise constant
For classification and K = 1, f (x) is the output class associated with the
nearest neighbor of x in the training set
For regression, f (x) is the average of the outputs associated with the K
nearest neighbors of x
The number of distinguishable regions cannot be more than the number of
training examples
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Interpolation with Kernel

f (x) = b +
n∑

i=1

αiK (x,xi)

K is a kernel function, e.g., the Gaussian kernel

K (u, v) = N(u− v; 0, σ2I)

b and αi can be learned by SVM
Treat each xi is a template and the kernel function as a similarity
function that matches a template and a test example
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Local Representation

One can think of the training samples as control knots which locally
specify the shape of the prediction function

The smoothness prior only allows the learner to generalize locally. If
(xi , yi) is a supervised training example and xi is a near neighbor of x,
we expect that f (x) ≈ yi . Better generalization can be obtained with
more neighbors.

To distinguish O(N) regions in the input space, shallow models require
O(N) examples (and typically there are O(N) parameters associated
with the O(N) regions).
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Local Representation

If the function is complex, more regions and more training
samples are required.

The representation learned by deep models can be generalized
non-locally
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