

CPU Architecture Overview

Bin ZHOU USTC. Spring 2015

CPU Pictures

Contents

- Modern CPU Architecture and Performance Considration
 - Pipelining
 - Branch Prediction
 - Superscalar
 - Out-of-Order (OoO) Execution
 - Memory Hierarchy
 - Vector Operations
 - SMT
 - Multicore
- Quick/Simple Question
 - What is a CPU????

What is a CPU anyways?

- Execute instructions
 - ALU, Arithmetic and Logic Unit
- Now so much more
 - Interface to main memory (DRAM)
 - I/O functionality
 - Ports
- Composed of transistors
 - Millions and Billions of them

Instructions

 Examples: arithmetic, memory, control flow add r3, r4 -> r4 load [r4] -> r7 jz end
 Given a compiled program, minimize

 cycles instruction × *seconds cycle* -CPI (cycles per instruction) & clock period -Reducing one term may increase the other

```
•增长到天空才是尽头? 彼此不独立。
•Paradox or dilemma??
```


Desktop Programs

- Lightly threaded
- Lots of branches
- Lots of memory accesses
- Only a few Vectors and Arithmetic operations

	vim	ls
Conditional branches	13.6%	12.5%
Memory accesses	45.7%	45.7%
Vector instructions	1.1%	0.2%

- "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year"
- What do we do with our transistor budget?

8

Intel Core i7 3960X (Codename Sandy Bridge-E) – 2.27B transistors, Total Size 435mm²

A Simple CPU Core

A Simple CPU Core

Fetch \rightarrow Decode \rightarrow Execute \rightarrow Memory \rightarrow Writeback

Pipelining

Pipelining

- •Capitalize on instruction-level parallelism (ILP)
- + Significantly reduced clock period
- Slight latency & area increase (pipeline latches)
- ? Dependent instructions
- ? Branches
- •Alleged Pipeline Lengths:
 - Core 2: 14 stages
 - Pentium 4 (Prescott): > 20 stages
 - Sandy Bridge: in between

Image: Penn CIS501

Image: Penn CIS501

Branch Prediction

- Guess what instruction comes next
- Based off branch history
- Example: two-level predictor with global history
 - Maintain history table of all outcomes for M successive branches
 - Compare with past N results (history register)
 - Sandy Bridge employs 32-bit history register
- Pretty Hard Work!

Branch Prediction

- + Modern predictors > 90% accuracy
 - Raise performance and energy efficiency (why?)
- Area increase
- Potential fetch stage latency increase

Another option: Predication

•Replace branches with conditional instructions

; if (r1==0) r3=r2

cmoveq r1, r2 -> r3

+ Avoids branch predictor

o Avoids area penalty, misprediction penalty

- Avoids branch predictor

 $\circ~$ Introduces unnecessary ${\tt nop}$ if predictable branch

•GPUs also use predication

Improving IPC

- IPC (instructions/cycle) bottlenecked at 1 instruction / clock
- Superscalar increase pipeline width

Superscalar

- + Peak IPC now at N (for N-way superscalar)
 - o Branching and scheduling impede this
 - Need some more tricks to get closer to peak (next)
- Area increase
 - Doubling execution resources
 - Bypass network grows at N²
 - Need more register & memory bandwidth

Superscalar in Sandy Bridge

Scheduling

•Consider instructions:

- xor r1,r2 -> r3
 add r3,r4 -> r4
 sub r5,r2 -> r3
 addi r3,1 -> r1
- xor and add are dependent (Read-After-Write, RAW)
- sub and addi are dependent (RAW)
- •xor and sub are not (Write-After-Write, WAW)

Register Renaming

•How about this instead:

xor p1,p2 -> p6
add p6,p4 -> p7
sub p5,p2 -> p8
addi p8,1 -> p9

•xor and sub can now execute in parallel

Out-of-Order Execution

- Reordering instructions to maximize throughput
- Fetch → Decode → Rename → Dispatch → Issue → Register-Read → Execute → Memory → Writeback → Commit
- Reorder Buffer (ROB)
 - Keeps track of status for in-flight instructions
- Physical Register File (PRF)
- Issue Queue/Scheduler
 - Chooses next instruction(s) to execute

OoO in Sandy Bridge

Out-of-Order Execution

- + Brings IPC much closer to ideal
- Area increase
- Energy increase
- •Modern Desktop/Mobile In-order CPUs
 - Intel Atom
 - ARM Cortex-A8 (Apple A4, TI OMAP 3)
 - Qualcomm Scorpion
- •Modern Desktop/Mobile OoO CPUs
 - Intel Pentium Pro and onwards
 - ARM Cortex-A9 (Apple A5, NV Tegra 2/3, TI OMAP 4)
 - Qualcomm Krait

Memory Hierarchy

- Memory: the larger it gets, the slower it gets
- Rough numbers:

	Latency	Bandwidth	Size
SRAM (L1, L2, L3)	1-2ns	200GBps	1-20MB
DRAM (memory)	70ns	20GBps	1-20GB
Flash (disk)	70-90µs	200MBps	100-1000GB
HDD (disk)	10ms	1-150MBps	500-3000GB

SRAM & DRAM latency, and DRAM bandwidth for Sandy Bridge from Lostcircuits

Flash and HDD latencies from <u>AnandTech</u>

Flash and HDD bandwidth from AnandTech Bench

SRAM bandwidth guesstimated.

Caching

- Keep data you need close
- Exploit:
 - Temporal locality
 - Chunk just used likely to be used again soon
 - Spatial locality
 - Next chunk to use is likely close to previous

Cache Hierarchy

- Hardware-managed
 - L1 Instruction/Data caches
 - L2 unified cache
 - L3 unified cache
- Software-managed
 - Main memory
 - Disk

Intel Core i7 3960X – 15MB L3 (25% of die). 4-channel Memory Controller, 51.2GB/s total

31

Some Memory Hierarchy Design Choices

- Banking
 - Avoid multi-porting
- Coherency
- Memory Controller
 - Multiple channels for bandwidth

Parallelism in the CPU

- Covered Instruction-Level (ILP) extraction
 - Superscalar
 - Out-of-order
- Data-Level Parallelism (DLP)
 - Vectors
- Thread-Level Parallelism (TLP)
 - Simultaneous Multithreading (SMT)
 - Multicore

Vectors Motivation

CPU Data-level Parallelism

•Single Instruction Multiple Data (SIMD)

- Let' s make the execution unit (ALU) really wide
- Let' s make the registers really wide too

```
for (int i = 0; i < N; i+= 4) {
    // in parallel
    A[i] = B[i] + C[i];
    A[i+1] = B[i+1] + C[i+1];
    A[i+2] = B[i+2] + C[i+2];
    A[i+3] = B[i+3] + C[i+3];</pre>
```


Vector Operations in x86

- SSE2
 - 4-wide packed float and packed integer instructions
 - Intel Pentium 4 onwards
 - AMD Athlon 64 onwards
- AVX
 - 8-wide packed float and packed integer instructions
 - Intel Sandy Bridge
 - AMD Bulldozer

Thread-Level Parallelism

- Thread Composition
 - Instruction streams
 - Private PC, registers, stack
 - Shared globals, heap
- Created and destroyed by programmer
- Scheduled by programmer or by OS

Simultaneous Multithreading

- •Instructions can be issued from multiple threads
- •Requires partitioning of ROB, other buffers
- + Minimal hardware duplication
- + More scheduling freedom for OoO
- Cache and execution resource contention can reduce single-threaded performance

Multicore

- •Replicate full pipeline
- •Sandy Bridge-E: 6 cores
- + Full cores, no resource sharing other than last-level cache
- + Easier way to take advantage of Moore's Law
- Utilization

Locks, Coherence, and Consistency

- **Problem**: multiple threads reading/writing to same data
- A solution: Locks
 - Implement with test-and-set, load-link/store-conditional instructions
- **Problem**: Who has the correct data?
- A solution: cache coherency protocol
- **Problem**: What is the correct data?
- A solution: memory consistency model

Difficulty : Power Wall

New Era of Computing: Parallel Computing

- General purpose single processor hits the power wall
 - Clock frequency (perf/clock) no longer increases linearly

The free lunch is over.

New Moore's Law

- CPUs becomes fatter and fatter, with more cores,
- Rather than faster...

СРИ Туре	CORES/Freq.	СРИ Туре	CORES/Freq.
Intel i7 3960X	6/3.3GHz	AMD FX-8150	8/3.6GHz
Intel Xeon E5- 2687W	8/3.1GHz	AMD Opteron 6282SE	16/2.6GHz

• Hit Another Wall: Memory Wall

growing disparity of speed between CPU and memory outside the CPU chip.

Conclusions

- CPU optimized for sequential programming
 - Pipelines, branch prediction, superscalar, OoO
 - Reduce execution time with high clock speeds and high utilization
- Slow memory is a constant problem
- Parallelism
 - Sandy Bridge-E great for 6-12 active threads
 - How about 12,000?

Additional Slides