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CPU GPU InteractionCPU-GPU Interaction

 S t Ph i l M S Separate Physical Memory Space

 Via PCIE Bus (8GB/s～16GB/s)

 Communication Overhead
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GPU Memory Hierarchy (CUDA View)GPU Memory Hierarchy (CUDA View)



GPU Memory Hierarchy (OpenCL View)GPU Memory Hierarchy (OpenCL View)



M  A  S dMemory Access Speed

 Register – dedicated HW - single cycle

 Shared Memory – dedicated HW - single cycle

 Local Memory – DRAM, no cache - *slow*

 Global Memory – DRAM, no cache - *slow*y

 Constant Memory – DRAM, cached, 1…10s…100s 
of cycles, depending on cache localityy , p g y

 Texture Memory – DRAM, cached, 1…10s…100s 
of cycles, depending on cache localityy , p g y

 Instruction Memory (invisible) – DRAM, cached



GPU Architecture ReviewGPU Architecture Review



CUDA Programming Modelg g
 The GPU is viewed as a compute device that:

 Is a coprocessor to the CPU or host Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel
 Hardware switching between threads (in 1 cycle) on long-

latency memory reference

 Overprovision (10000s of threads)  hide latencies

 Data-parallel portions of an application are 
executed on the device as kernels which run in 
parallel on many threadsparallel on many threads

 Differences between GPU and CPU threads 
 GPU threads are extremely lightweight G U e  e e e e y g e g

 Very little creation overhead

 GPU needs 10000s of threads for full efficiency
 Multi r CPU n d nl f Multi-core CPU needs only a few



Thread Batching: Grids and BlocksThread Batching: Grids and Blocks
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GPU Threads OrganizationGPU Threads Organization



GPU Threads Mapping to HardwareGPU Threads Mapping to Hardware



GPU M ith Th dGPU Memory with Threads 
Thread Block
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GPU M Hi h R ll

Block (0,0) Block (1,0)

GPU Memory Hierarchy Recall
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SIMD (Single Instruction Multiple 
Data) 

Similar Idea with Data Partition/DifferentSimilar Idea with Data Partition/Different 
Level

InstructionInstruction
a[] = a[] + k

ALUs

a[0] a[n 1]a[n-2]a[1]a[0] a[n-1]a[n 2]a[1]

14



Extended CExtended C

 Declspecs __device__ float filter[N]; p
 global, device, shared, 

local, constant
 Keywords

__global__ void convolve (float *image)  {

__shared__ float region[M]; Keywords
 threadIdx, blockIdx

 Intrinsics
th d

... 

region[threadIdx] = image[i]; 

 __syncthreads
 Runtime API

 Memory, symbol, 

__syncthreads()  
... 
image[j] = result;

execution 
management

}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

 Function launch
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);



CUDA Function DeclarationsCUDA Function Declarations

Executed on 

the:

Only callable 

from the:

__device__ float DeviceFunc() device device

__global__ void  KernelFunc() device Host

__host__ float HostFunc() host Host

 __global__ defines a kernel function
 Must return void

 __device__ and __host__ can be used together


