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» CPU&GPU Interaction
» GPU Thread Organization (important)
» GPU Memory Hierarchy

» Some Basic Programming



CPU-GPU Interaction

» Separate Physical Memory Space
» Via PCIE Bus (8GB/s~16GB/s)
» Communication Overhead
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Memory Access Speed

» Register - dedicated HW — single cycle

» Shared Memory - dedicated HW - single cycle

» Local Memory - DRAM, no cache — *slow#
» Global Memory - DRAM, no cache — *slows*
» Constant Memory - DRAM, cached, 1:--10s-

of cycles, depending on cache locality

» Texture Memory - DRAM, cached, 1:--10s--

of cycles, depending on cache locality

» Instruction Memory (invisible) - DRAM,
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PolyMorph Engine 2.0
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CUDA Programming Model

» The GPU is viewed as a compute that:
» Is a coprocessor to the CPU or
» Has its own DRAM ( )

» Runs many

» Hardware switching between threads (in 1 cycle) on long—
latency memory reference

» Overprovision (10000s of threads) = hide latencies

» Data—parallel portions of an application are
executed on the device as which run in
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» Differences between GPU and CPU threads
» GPU threads are extremely lightweight

» Very little creation overhead

» GPU needs 10000s of threads for full efficiency
» Multi—core CPU needs only a few
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» Kernel executed as a grid of
thread blocks

» All threads share data
memory space

» Thread block is a batch of
threads, can cooperate with
each other by:

» Synchronizing their
execution:
For hazard-free shared
memory accesses

» Efficiently sharing data
through a low latency
shared memory

» Two threads from two different

blocks cannot cooperate

»  (Unless thru slow global
memory)
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GFU Memory with Ihreads
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GPU Memory Hierarchy Recall
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SIMD (Single Instruction Multiple
- Data)

Similar Idea with Data Partition/Different
Level

Instruction
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Extended C

» Declspecs

» global, device, shared,

local, constant

» Keywords

» threadldx, blockldx

» Intrinsics
» __syncthreads
» Runtime API

» Memory, symbol,
execution
management

» Function launch

__device_ _ fTloat filter[N];
__global__ void convolve (float *image)

__shared__ float region[M];

region[threadldx] = image[i];

__syncthreads()

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

{



CUDA Function Declarations

Executed on| Only callable
the: from the:
float DeviceFunc () device device
void KernelFunc () device Host
float HostFunc () host Host
» __global __ defines a kernel function

» Must return void

» __device_and host__ can be used together




