CUDA/GPU Programming Model

Bin ZHOU @ NVIDIA & USTC
Jan. 2015

N R B
LOIlILEIILS

» CPU&GPU Interaction
» GPU Thread Organization (important)
» GPU Memory Hierarchy

» Some Basic Programming

CPU-GPU Interaction

» Separate Physical Memory Space
» Via PCIE Bus (8GB/s~16GB/s)
» Communication Overhead

DRAM | GDRAM |

FL
CPU GPU e

Shared Memory

I Multiprocessor
/O PCle /O

Memory Memory
Workltem 1 Workltem M

Compute Unit 1

Local Memory

Compute Device

Memory Memory
Workltem 1 Workltem M

Compute UnitN

| Local Memory

Global/ ConstantMemory Data Cache

I

Global Memory

Compute Device Memory

Memory Access Speed

» Register - dedicated HW — single cycle

» Shared Memory - dedicated HW - single cycle

» Local Memory - DRAM, no cache — *slow#
» Global Memory - DRAM, no cache — *slows*
» Constant Memory - DRAM, cached, 1:--10s-

of cycles, depending on cache locality

» Texture Memory - DRAM, cached, 1:--10s--

of cycles, depending on cache locality

» Instruction Memory (invisible) - DRAM,

-+100s

-100s

cached

PolyMorph Engine 2.0

] | PCI Express 3.0 Host Interface

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
+ +

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Raster Engine

Core Core 8 LR
SMM Shi

Core Core Core Core Core 'olymorph Engine 2.0 Polymorph Engine 2.0

Core Core Core

Il
Core Core Core Core Core
[rem—

—

pem—
Core Core Core Core Core

Core Core Core Core Core
Core Core Core Core Core
Core Core

Core Core

Dispatch Unit Dispatch Unit Dispatch Unit [T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core | Core
Core Core Core [| Core
Core Core Core
Core Core | Core
Core Core Core

Core Core

Core Core

S E R E DG

Core | Core Memory Controller Memory Controller

CUDA Programming Model

» The GPU is viewed as a compute that:
» Is a coprocessor to the CPU or
» Has its own DRAM ()

» Runs many

» Hardware switching between threads (in 1 cycle) on long—
latency memory reference

» Overprovision (10000s of threads) = hide latencies

» Data—parallel portions of an application are
executed on the device as which run in
m~emaral T AT A ot Alhar~aa A
palallcl Oll llally LIIL ©€alUus

» Differences between GPU and CPU threads
» GPU threads are extremely lightweight

» Very little creation overhead

» GPU needs 10000s of threads for full efficiency
» Multi—core CPU needs only a few

Thor e d DRa+
Inread bat

__ . M _
1ng: Gr

» Kernel executed as a grid of
thread blocks

» All threads share data
memory space

» Thread block is a batch of
threads, can cooperate with
each other by:

» Synchronizing their
execution:
For hazard-free shared
memory accesses

» Efficiently sharing data
through a low latency
shared memory

» Two threads from two different

blocks cannot cooperate

» (Unless thru slow global
memory)

201 - 1 D1 - -1_
lub alld DI1IOCRKS
Host Device
Grid 1
Kernel » Block Block Block
! 0,0 | (10 | (20
Block” Block Block
0,4) L1 (21
“ Grid 2 h
Kernel —=— | / l' “\‘
2 d /II \ \
v d | | | | FR
Block (1, 1) :

o
o
<
=
o
o’
<
=
o
o
<
=
o
o’
<
=

Thneed

Ry

GFU Memory with Ihreads
Thread Block
Thread Private Each block
Local Memory Shared
Memory
Kernel O
e || SN || S SIS Sequential
Kernels

Device(GPUO)
memory

cudaMemcpy ()

Device(GPU1)
Memory

+

GPU Memory Hierarchy Recall

Host

A

Block (0,0)

Registers

Thread (0,0)

Thread (1,0)

i,

A

A

A 4

Block (1,0)

Registers

Thread (0,0)

Thread (1,0)

i,

A 4

SIMD (Single Instruction Multiple
- Data)

Similar Idea with Data Partition/Different
Level

Instruction
af] =af] +k

> o©

a[0] a[1] a[n-2] a[n-1]

Extended C

» Declspecs

» global, device, shared,

local, constant

» Keywords

» threadldx, blockldx

» Intrinsics
» __syncthreads
» Runtime API

» Memory, symbol,
execution
management

» Function launch

__device_ _ fTloat filter[N];
__global__ void convolve (float *image)

__shared__ float region[M];

region[threadldx] = image[i];

__syncthreads()

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

{

CUDA Function Declarations

Executed on| Only callable
the: from the:
float DeviceFunc () device device
void KernelFunc () device Host
float HostFunc () host Host
» __global __ defines a kernel function

» Must return void

» __device_and host__ can be used together

