
CUDA/GPU Programming Model

Bin ZHOU @ NVIDIA & USTCBin ZHOU @ NVIDIA & USTC
Jan.2015

ContentsContents

 CPU&GPU Interaction

 GPU Thread Organization（important） GPU Thread Organization（important）

 GPU Memory Hierarchy

 Some Basic Programming

CPU GPU InteractionCPU-GPU Interaction

 S t Ph i l M S Separate Physical Memory Space

 Via PCIE Bus (8GB/s～16GB/s)

 Communication Overhead

© NVIDIA Corporation

GPU Memory Hierarchy (CUDA View)GPU Memory Hierarchy (CUDA View)

GPU Memory Hierarchy (OpenCL View)GPU Memory Hierarchy (OpenCL View)

M A S dMemory Access Speed

 Register – dedicated HW - single cycle

 Shared Memory – dedicated HW - single cycle

 Local Memory – DRAM, no cache - *slow*

 Global Memory – DRAM, no cache - *slow*y

 Constant Memory – DRAM, cached, 1…10s…100s
of cycles, depending on cache localityy , p g y

 Texture Memory – DRAM, cached, 1…10s…100s
of cycles, depending on cache localityy , p g y

 Instruction Memory (invisible) – DRAM, cached

GPU Architecture ReviewGPU Architecture Review

CUDA Programming Modelg g
 The GPU is viewed as a compute device that:

 Is a coprocessor to the CPU or host Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel
 Hardware switching between threads (in 1 cycle) on long-

latency memory reference

 Overprovision (10000s of threads) hide latencies

 Data-parallel portions of an application are
executed on the device as kernels which run in
parallel on many threadsparallel on many threads

 Differences between GPU and CPU threads
 GPU threads are extremely lightweight G U e e e e e y g e g

 Very little creation overhead

 GPU needs 10000s of threads for full efficiency
 Multi r CPU n d nl f Multi-core CPU needs only a few

Thread Batching: Grids and BlocksThread Batching: Grids and Blocks

 Kernel executed as a grid of
h d bl k

Host Device
thread blocks

 All threads share data
memory space

Host

Kernel
1

Device

Grid 1

Block
(0 0)

Block
(1 0)

Block
(2 0)

 Thread block is a batch of
threads, can cooperate with
each other by:

1 (0, 0) (1, 0) (2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

 Synchronizing their
execution:
For hazard-free shared

Kernel
2

Grid 2

memory accesses

 Efficiently sharing data
through a low latency

Block (1, 1)

Thread
(0 0)

Thread
(1 0)

Thread
(2 0)

Thread
(3 0)

Thread
(4 0)through a low latency

shared memory

 Two threads from two different
blocks cannot cooperate

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread Thread Thread Thread Thread

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

blocks cannot cooperate

 (Unless thru slow global
memory)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

GPU Threads OrganizationGPU Threads Organization

GPU Threads Mapping to HardwareGPU Threads Mapping to Hardware

GPU M ith Th dGPU Memory with Threads
Thread Block

E h bl kThread Private
Local Memory

Each block
Shared
Memory

Kernel 0

. . .
Sequential
Kernels. . .

Global
MemoryKernel 1

Kernels

. . .

D i (GPU0)Device(GPU0)
memory

Host
Memory cudaMemcpy()

Device(GPU1)
Memory

Memory

GPU M Hi h R ll

Block (0,0) Block (1,0)

GPU Memory Hierarchy Recall

Shared Memory

Registers Registers

Shared Memory

Registers RegistersRegisters Registers

Thread (0,0) Thread (1,0)

Registers Registers

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Global
Memory

Constant
H t Memory

Texture
Memory

Host

SIMD (Single Instruction Multiple
Data)

Similar Idea with Data Partition/DifferentSimilar Idea with Data Partition/Different
Level

InstructionInstruction
a[] = a[] + k

ALUs

a[0] a[n 1]a[n-2]a[1]a[0] a[n-1]a[n 2]a[1]

14

Extended CExtended C

 Declspecs __device__ float filter[N]; p
 global, device, shared,

local, constant
 Keywords

__global__ void convolve (float *image) {

__shared__ float region[M]; Keywords
 threadIdx, blockIdx

 Intrinsics
th d

...

region[threadIdx] = image[i];

 __syncthreads
 Runtime API

 Memory, symbol,

__syncthreads()
...
image[j] = result;

execution
management

}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

 Function launch
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

CUDA Function DeclarationsCUDA Function Declarations

Executed on

the:

Only callable

from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device Host

__host__ float HostFunc() host Host

 __global__ defines a kernel function
 Must return void

 __device__ and __host__ can be used together

