
CUDA/GPU Programming(1)/ g g()

Bin ZHOUBin ZHOU
Jan.2015

AcknowledgementAcknowledgement

 Some Slides are from David Kirk Wen-mei Hwu’s
UIUC GPU CUIUC GPU Course

 Some Slides are from Patrick Cozzi University of
Pennsylvania CIS 565

GPU Architecture ReviewGPU Architecture Review

GPU i li d f GPUs are specialized for

 Compute-intensive, highly parallel computation

G hi ! Graphics!

 Transistors are devoted to:

P i Processing

 Not:

 D t hi Data caching

 Flow control

GPU Architecture ReviewGPU Architecture Review

Transistor Usage

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

Let’s CUDALet s CUDA
NoNow

GPU Computing HistoryGPU Computing History

/ 2001/2002 – researchers see GPU as data-
parallel coprocessor
 The GPGPU field is born

 2007 – NVIDIA releases CUDA
 CUDA – Compute Uniform Device Architecture

 GPGPU shifts to GPU Computing

 2008 – Khronos releases OpenCL specification

 2013 – Khronos releases OpenGL compute 2013 Khronos releases OpenGL compute
shaders

CUDA AbstractionsCUDA Abstractions

 A hierarchy of thread groups

 Shared memories

 Barrier synchronization

CUDA TerminologyCUDA Terminology

 Host – typically the CPU

 Code written in ANSI C

 Device – typically the GPU (data-parallel)

 Code written in extended ANSI C

 Host and device have separate memories

 CUDA Program

 Contains both host and device code

CUDA TerminologyCUDA Terminology

 Kernel – data-parallel function

 Invoking a kernel creates lightweight threads on
the device

h d d d h d l d h h d Threads are generated and scheduled with hardware

 Similar to a shader in OpenGL?

CUDA KernelsCUDA Kernels

 Executed N times in parallel by N different
CUDA threads

Thread ID

Declaration
Specifier

Execution
Configuration

CUDA Program ExecutionCUDA Program Execution

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Grid – one or more thread blocks

 1D or 2D

 Block – array of threads

 1D, 2D, or 3D

 Each block in a grid has the same number of threads

 Each thread in a block can

 Synchronize

 Access shared memory Access shared memory

Thread Hierarchies RecallThread Hierarchies Recall

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Block – 1D, 2D, or 3D

 Example: Index into vector, matrix, volume

Thread HierarchiesThread Hierarchies

 Thread ID: Scalar thread identifier
h d d Thread Index: threadIdx

 1D: Thread ID == Thread Index

 2D with size (Dx, Dy)x, y

 Thread ID of index (x, y) == x + y Dx

 3D with size (Dx, Dy Dz) (x, y, z)

 Thread ID of index (x, y, z) == x + y Dx + z Dx Dy

Thread HierarchiesThread Hierarchies

2D Index

1 Thread Block 2D Block

Thread HierarchiesThread Hierarchies

 Thread Block

 Group of threads

 G80 and GT200: Up to 512 threads

 Fermi and Kepler: Up to 1024 threads

 Maxwell: Up to 1024 threads

 Reside on same processor core Reside on same processor core

 Share memory of that core(SM, SMX, SMM…)

Thread HierarchiesThread Hierarchies

 Thread Block

 Group of threads

 G80 and GT200: Up to 512 threads

 Fermi and Kepler: Up to 1024 threads

 Reside on same processor core

Sh f th t Share memory of that core

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Block Index: blockIdx
 Dimension: blockDim
 1D or 2D

Thread HierarchiesThread Hierarchies

16x16
Threads per blockThreads per block

2D Thread Block

Thread HierarchiesThread Hierarchies

 Example: N = 32

 16x16 threads per block (independent of N)
 threadIdx ([0, 15], [0, 15])

 2x2 thread blocks in grid
 blockIdx ([0, 1], [0, 1])

 blockDim = 16 blockDim = 16

 i = [0, 1] * 16 + [0, 15] i [0, 1] 16 + [0, 15]

Thread HierarchiesThread Hierarchies

 Blocks execute independently

 In any order: parallel or series

 Scheduled in any order by any number of cores

 Allows code to scale with core count

CUDA Memory TransfersCUDA Memory Transfers

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 Host can transfer to/from device

 Global memory

 Constant memory

 Note:

Constant memory is

constant for GPU code, not CPU host;

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 cudaMalloc()
 Allocate global memory on device

 cudaFree()
 Frees memory

 Many other memory APIs:

 cudaMemcpyToSymbol()py y ()

 cudaMemcpyFromSymbol()

 cudaMemset() cudaMemset()

 cudaMemcpyPeer()

 …

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Size in bytes

Pointer to device memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

Source (host)Destination (device) Host to device

Host DeviceHost Device

Global Memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Host DeviceHost Device

Global Memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply ReminderMatrix Multiply Reminder

 Vectors

 Dot products

 Row major or column major?j j

 Dot product per output element

Matrix MultiplyMatrix Multiply

P M * N P = M * N
 Assume M and N are

f i li itsquare for simplicity

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 1,000 x 1,000 matrix
 1,000,000 dot products
 Each 1,000 multiples and 1,000 adds Each 1,000 multiples and 1,000 adds

Matrix Multiply: CPU
ImplementationImplementation

void MatrixMulOnHost(float* M, float* N, float* P, int width)
{
f (i t i 0 i < idth ++i)for (int i = 0; i < width; ++i)
for (int j = 0; j < width; ++j)
{
float sum = 0;float sum = 0;
for (int k = 0; k < width; ++k)
{
float a = M[i * width + k];float a = M[i width + k];
float b = N[k * width + j];
sum += a * b;

}}
P[i * width + j] = sum;

}
}

Code from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture3%20cuda%20threads%20spring%202010.ppt

}

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 1

 Add CUDA memory transfers to the skeleton

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Allocate input

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Allocate outputAllocate output

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Read back
from device

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 2

 Implement the kernel in CUDA C

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Accessing a matrix, so using a 2D block

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Each kernel computes one output

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Where did the two outer for loops
in the CPU implementation go?in the CPU implementation go?

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

No locks or synchronization, why?

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 3

 Invoke the kernel in CUDA C

Matrix Multiply: Invoke KernelMatrix Multiply: Invoke Kernel

One block with width
by width threadsby width threads

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply
 One Block of threads compute matrix

Pd
Grid 1

Block 1

Nd

 Each thread computes one element of
Pd

 Each thread

Block 1
2

4

2Th d Each thread
 Loads a row of matrix Md
 Loads a column of matrix Nd
 P f lti l d dditi f

2

6

Thread
(2, 2)

 Perform one multiply and addition for
each pair of Md and Nd elements

 Compute to off-chip memory access
ratio close to 1:1 (not very high)ratio close to 1:1 (not very high)

 Size of matrix limited by the number of
threads allowed in a thread block

3 2 5 4 48

WIDTH

Md Pd
54

Md Pd© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Slide from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture2%20cuda%20spring%2009.ppt

Matrix MultiplyMatrix Multiply

 What is the major performance problem with our
implementation?

 What is the major limitation?j

