
CUDA/GPU Programming(1)/ g g()

Bin ZHOUBin ZHOU
Jan.2015

AcknowledgementAcknowledgement

 Some Slides are from David Kirk Wen-mei Hwu’s
UIUC GPU CUIUC GPU Course

 Some Slides are from Patrick Cozzi University of
Pennsylvania CIS 565

GPU Architecture ReviewGPU Architecture Review

GPU i li d f GPUs are specialized for

 Compute-intensive, highly parallel computation

G hi ! Graphics!

 Transistors are devoted to:

P i Processing

 Not:

 D t hi Data caching

 Flow control

GPU Architecture ReviewGPU Architecture Review

Transistor Usage

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

Let’s CUDALet s CUDA
NoNow

GPU Computing HistoryGPU Computing History

/ 2001/2002 – researchers see GPU as data-
parallel coprocessor
 The GPGPU field is born

 2007 – NVIDIA releases CUDA
 CUDA – Compute Uniform Device Architecture

 GPGPU shifts to GPU Computing

 2008 – Khronos releases OpenCL specification

 2013 – Khronos releases OpenGL compute 2013 Khronos releases OpenGL compute
shaders

CUDA AbstractionsCUDA Abstractions

 A hierarchy of thread groups

 Shared memories

 Barrier synchronization

CUDA TerminologyCUDA Terminology

 Host – typically the CPU

 Code written in ANSI C

 Device – typically the GPU (data-parallel)

 Code written in extended ANSI C

 Host and device have separate memories

 CUDA Program

 Contains both host and device code

CUDA TerminologyCUDA Terminology

 Kernel – data-parallel function

 Invoking a kernel creates lightweight threads on
the device

h d d d h d l d h h d Threads are generated and scheduled with hardware

 Similar to a shader in OpenGL?

CUDA KernelsCUDA Kernels

 Executed N times in parallel by N different
CUDA threads

Thread ID

Declaration
Specifier

Execution
Configuration

CUDA Program ExecutionCUDA Program Execution

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Grid – one or more thread blocks

 1D or 2D

 Block – array of threads

 1D, 2D, or 3D

 Each block in a grid has the same number of threads

 Each thread in a block can

 Synchronize

 Access shared memory Access shared memory

Thread Hierarchies RecallThread Hierarchies Recall

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Block – 1D, 2D, or 3D

 Example: Index into vector, matrix, volume

Thread HierarchiesThread Hierarchies

 Thread ID: Scalar thread identifier
h d d Thread Index: threadIdx

 1D: Thread ID == Thread Index

 2D with size (Dx, Dy)x, y

 Thread ID of index (x, y) == x + y Dx

 3D with size (Dx, Dy Dz) (x, y, z)

 Thread ID of index (x, y, z) == x + y Dx + z Dx Dy

Thread HierarchiesThread Hierarchies

2D Index

1 Thread Block 2D Block

Thread HierarchiesThread Hierarchies

 Thread Block

 Group of threads

 G80 and GT200: Up to 512 threads

 Fermi and Kepler: Up to 1024 threads

 Maxwell: Up to 1024 threads

 Reside on same processor core Reside on same processor core

 Share memory of that core(SM, SMX, SMM…)

Thread HierarchiesThread Hierarchies

 Thread Block

 Group of threads

 G80 and GT200: Up to 512 threads

 Fermi and Kepler: Up to 1024 threads

 Reside on same processor core

Sh f th t Share memory of that core

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread HierarchiesThread Hierarchies

 Block Index: blockIdx
 Dimension: blockDim
 1D or 2D

Thread HierarchiesThread Hierarchies

16x16
Threads per blockThreads per block

2D Thread Block

Thread HierarchiesThread Hierarchies

 Example: N = 32

 16x16 threads per block (independent of N)
 threadIdx ([0, 15], [0, 15])

 2x2 thread blocks in grid
 blockIdx ([0, 1], [0, 1])

 blockDim = 16 blockDim = 16

 i = [0, 1] * 16 + [0, 15] i [0, 1] 16 + [0, 15]

Thread HierarchiesThread Hierarchies

 Blocks execute independently

 In any order: parallel or series

 Scheduled in any order by any number of cores

 Allows code to scale with core count

CUDA Memory TransfersCUDA Memory Transfers

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 Host can transfer to/from device

 Global memory

 Constant memory

 Note:

Constant memory is

constant for GPU code, not CPU host;

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 cudaMalloc()
 Allocate global memory on device

 cudaFree()
 Frees memory

 Many other memory APIs:

 cudaMemcpyToSymbol()py y ()

 cudaMemcpyFromSymbol()

 cudaMemset() cudaMemset()

 cudaMemcpyPeer()

 …

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Size in bytes

Pointer to device memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

 cudaMemcpy()
 M t f Memory transfer

 Host to host

 Host to device
Host Device

 Host to device

 Device to host

 Device to device

Global Memory

CUDA Memory TransfersCUDA Memory Transfers

Source (host)Destination (device) Host to device

Host DeviceHost Device

Global Memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory TransfersCUDA Memory Transfers

Host DeviceHost Device

Global Memory

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply ReminderMatrix Multiply Reminder

 Vectors

 Dot products

 Row major or column major?j j

 Dot product per output element

Matrix MultiplyMatrix Multiply

P M * N P = M * N
 Assume M and N are

f i li itsquare for simplicity

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 1,000 x 1,000 matrix
 1,000,000 dot products
 Each 1,000 multiples and 1,000 adds Each 1,000 multiples and 1,000 adds

Matrix Multiply: CPU
ImplementationImplementation

void MatrixMulOnHost(float* M, float* N, float* P, int width)
{
f (i t i 0 i < idth ++i)for (int i = 0; i < width; ++i)
for (int j = 0; j < width; ++j)
{
float sum = 0;float sum = 0;
for (int k = 0; k < width; ++k)
{
float a = M[i * width + k];float a = M[i width + k];
float b = N[k * width + j];
sum += a * b;

}}
P[i * width + j] = sum;

}
}

Code from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture3%20cuda%20threads%20spring%202010.ppt

}

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA SkeletonMatrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 1

 Add CUDA memory transfers to the skeleton

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Allocate input

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Allocate outputAllocate output

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data TransferMatrix Multiply: Data Transfer

Read back
from device

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 2

 Implement the kernel in CUDA C

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Accessing a matrix, so using a 2D block

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Each kernel computes one output

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

Where did the two outer for loops
in the CPU implementation go?in the CPU implementation go?

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA KernelMatrix Multiply: CUDA Kernel

No locks or synchronization, why?

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply

 Step 3

 Invoke the kernel in CUDA C

Matrix Multiply: Invoke KernelMatrix Multiply: Invoke Kernel

One block with width
by width threadsby width threads

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix MultiplyMatrix Multiply
 One Block of threads compute matrix

Pd
Grid 1

Block 1

Nd

 Each thread computes one element of
Pd

 Each thread

Block 1
2

4

2Th d Each thread
 Loads a row of matrix Md
 Loads a column of matrix Nd
 P f lti l d dditi f

2

6

Thread
(2, 2)

 Perform one multiply and addition for
each pair of Md and Nd elements

 Compute to off-chip memory access
ratio close to 1:1 (not very high)ratio close to 1:1 (not very high)

 Size of matrix limited by the number of
threads allowed in a thread block

3 2 5 4 48

WIDTH

Md Pd
54

Md Pd© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Slide from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture2%20cuda%20spring%2009.ppt

Matrix MultiplyMatrix Multiply

 What is the major performance problem with our
implementation?

 What is the major limitation?j

