Basic CUDA Optimization

Bin ZHOU @ NVIDIA & USTC Jan. 2015

Agenda

- Parallel Reduction
- Warp Partitioning
- Memory Coalescing
- Bank Conflicts
- Dynamic Partitioning of SM Resources
- Data Prefetching
- Instruction Mix
- Loop Unrolling

Optimizations based on GPU Architecture

Maximum Performance

Recall Parallel Reduction (sum)

Similar to brackets for a basketball tournament log(n) passes for n elements How would you implement this in CUDA?


```
____shared____float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
     stride < blockDim.x;
     stride *= 2)
  ____syncthreads();
  if (t % (2 * stride) == 0)
    partialSum[t] +=
      partialSum[t + stride];
```

• •

_shared__ float partialSum[]; // ... load into shared memory unsigned int t = threadIdx.x; for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) Computing the sum for the elements in shared memory ____syncthreads(); if (t % (2 * stride) == 0) partialSum[t] += partialSum[t + stride];

___shared___ float partialSum[]; // ... load into shared memory unsigned int t = threadIdx.x; for (unsigned int stride = 1; Stride: stride < blockDim.x; 1, 2, 4, ... stride *= 2) ____syncthreads(); if (t % (2 * stride) == 0) partialSum[t] += partialSum[t + stride];

___shared___ float partialSum[]; // ... load into shared memory unsigned int t = threadIdx.x; for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)

if (t % (2 * stride) == 0)
 partialSum[t] +=
 partialSum[t + stride];

$1^{\,st}$ pass: threads 1, 3, 5, and 7 don't do anything

Really only need n/2 threads for n elements

2nd pass: threads 2 and 6 also don't do anything

3rd pass: thread 4 also doesn't do anything

In general, number of required threads cuts in half after each pass

What if we *tweaked* the implementation?


```
<u>____shared___</u> float partialSum[]
// ... load into shared memory
unsigned int t = threadIdx.x;
for(unsigned int stride = blockDim.x / 2;
     stride > 0;
     stride /= 2)
  __syncthreads();
  if (t < stride)
    partialSum[t] +=
      partialSum[t + stride];
```


$1^{\,\rm st}$ pass: threads 4, 5, 6, and 7 don't do anything

Really only need n/2 threads for n elements

2nd pass: threads 2 and 3 also don't do anything

3rd pass: thread I also doesn't do anything

What is the difference?

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

What is the difference?

if (t % (2 * stride) == 0)	if (t < stride)
partialSum[t] +=	partialSum[t] +=
<pre>partialSum[t + stride];</pre>	<pre>partialSum[t + stride];</pre>

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

Warp Partitioning: how threads from a block are divided into warps Knowledge of warp partitioning can be used to: Minimize divergent branches Retire warps early

Partition based on *consecutive increasing* threadIdx

ID Block threadIdx.x between 0 and 512 (G80/GT200) Warp n Starts with thread 32n Ends with thread 32(n + 1) - 1 Last warp is padded if block size is not a multiple of 32

2D Block

Increasing threadIdx means
 Increasing threadIdx.x
Starting with row threadIdx.y == 0
37

D

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

3D Block

Start with threadIdx.z == 0 Partition as a 2D block Increase threadIdx.z and repeat

Divergent branches are within a warp!

39

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

40

For warpSize == 32, does any warp have a divergent branch with this code:

```
if (threadIdx.x > 15)
{
    // ...
}
```

41

For any warpSize > 1, does any warp have a divergent branch with this code:

```
if (threadIdx.x > warpSize - 1)
{
   // ...
}
```

Given knowledge of warp partitioning, which parallel reduction is better?

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

Pretend warpSize == 2

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

43

Ist Pass

44

2nd Pass

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

45

2nd Pass

46

2nd Pass

Good partitioning also allows warps to be retired early. Better hardware utilization

<pre>if (t % (2 * stride) == 0) partialSum[t] += partialSum[t + stride];</pre>	<pre>if (t < stride) partialSum[t] += partialSum[t + stride];</pre>
stride = 1, 2, 4,	stride = 4, 2, 1,

48

D

Parallel Reduction

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

49

Ist Pass

50

Ist Pass

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

2nd Pass

2nd Pass

stride = 1, 2, 4, ...

stride = 4, 2, 1, ...

Memory Coalescing

Given a matrix stored *row-major* in *global memory*, what is a *thread*'s desirable access pattern?

Memory Optimization

Minimizing CPU-GPU data transfer

Host<->device data transfer has much lower bandwidth than global memory access.

•8 GB/s (PCIe x16 Gen2) vs 156 GB/s & 515 Ginst/s (C2050)

Minimize transfer

Intermediate data can be allocated, operated, de-allocated directly on GPU

•Sometimes it's even better to recompute on GPU

• Move CPU codes to GPU that do not have performance gains if it can reduce data transfer

Group transfer

• One large transfer much better than many small ones: 10 microsec latency, 8 GB/s => latency dominated if data size < 80 KB

Overlap memory transfer with computation

Double buffering

•Global memory latency: 400-800 cycles.

The single most important performance consideration!

On Fermi, by default all global memory access are cached in LI.

LI can be by-passed by passing "-Xptxas –dlcm=cg" to nvcc: cache only in L2

If cached: requests from a warp falling in a LI cache line, one transaction

transaction = # LI line accessed

If non-cached: same coalescing criterion

But transaction size can be reduced to 32B segment

- Global memory access of 32, 64, or 128-bit words by a half-warp of threads can result in as few as one (or two) transaction(s) if certain access requirements are met
- Depends on compute capability
 - 1.0 and 1.1 have stricter access requirements
- Float (32-bit) data example:

Global Memory

Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

Compute capability 1.2 and higher

- Issues transactions for segments of 32B, 64B, and 128B
- Smaller transactions used to avoid wasted bandwidth

1 transaction - 64B segment

Coalescing Examples

Effective bandwidth of small kernels that copy data
Effects of offset and stride on performance

Two GPUs

GTX 280

- Compute capability 1.3
- Peak bandwidth of 141 GB/s
- FX 5600
 - Compute capability 1.0
 - Peak bandwidth of 77 GB/s

Coalescing Examples

```
_global___ void strideCopy(float *odata, float *idata,
                                 int stride)
{
  int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;
  odata[xid] = idata[xid];
}
                                            Copy with Stride
                                    120
                                 Effective Bandwidth (GB/s)
                                    100
                                     80
                                     60
                                                                 FX5600
                                     40
                                     20
                                      0
                                                      12 14 16 18
                                       0
                                                    10
                                               Stride
```

Coalescing Examples

Strided memory access is inherent in many multidimensional problems
 Stride is generally large (>> 18)

Copy with Stride

However ...

Strided access to global memory can be avoided using shared memory

Shared Memory

~Hundred times faster than global memory

- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing

Shared Memory Architecture

Many threads accessing memory

- Therefore, memory is divided into banks
- Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle A memory can service as many simultaneous accesses as it has banks

Multiple simultaneous accesses to a bank result in a bank conflict

Conflicting accesses are serialized

Bank Addressing Examples

Bank Addressing Examples

Shared memory bank conflicts

- Shared memory is ~ as fast as registers if there are no bank conflicts
- warp_serialize profiler signal reflects conflicts

The fast case:

- If all threads of a half-warp access different banks, there is no bank conflict
- If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)

The slow case:

- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

Shared Memory Example:

Transpose Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to global memory

Elements transposed by a half-warp of threads

Neight)

```
global___ void transposeNaive(float *odata, float *idata,
                               int width, int height)
{
  int xIndex = blockIdx.x * TILE DIM + threadIdx.x;
  int yIndex = blockIdx.y * TILE DIM + threadIdx.y;
  int index in = xIndex + width * yIndex;
  int index out = yIndex + height * xIndex;
 odata[index out] = idata[index in];
}
                   idata
                                       odata
```

Coalescing through shared memory

- Access columns of a tile in shared memory to write contiguous data to global memory
- Requires ______syncthreads() since threads access data in shared memory stored by other threads

Elements transposed by a half-warp of threads
Coalescing through shared

memory

}

```
__global__ void transposeCoalesced(float *odata, float *idata,
int width, int height)
{
```

```
____shared___ float tile[TILE_DIM][TILE_DIM];
```

```
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;
```

```
xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;
```

```
tile[threadIdx.y][threadIdx.x] = idata[index_in];
```

```
odata[index_out] = tile[threadIdx.x][threadIdx.y];
```

Bank Conflicts in Transpose

I6xI6 shared memory tile of floats

- Data in columns are in the same bank
- I6-way bank conflict reading columns in tile

Solution - pad shared memory array

Elements transposed by a half-warp of threads

Padding Shared Memory

Textures in CUDA

Texture is an object for reading data

Benefits:

- Data is cached
 - Helpful when coalescing is a problem
- Filtering
 - Linear / bilinear / trilinear interpolation
 - Dedicated hardware
- Wrap modes (for "out-of-bounds" addresses)
 - Clamp to edge / repeat
- Addressable in 1D, 2D, or 3D
 - Using integer or normalized coordinates

Texture Addressing

Wrap

Out-of-bounds coordinate is wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is replaced with the closest boundary

CUDA Texture Types

Bound to linear memory

- Global memory address is bound to a texture
- Only 1D
- Integer addressing
- No filtering, no addressing modes

Bound to CUDA arrays

- Block linear CUDA array is bound to a texture
- 1D, 2D, or 3D
- Float addressing (size-based or normalized)
- Filtering
- Addressing modes (clamping, repeat)
- Bound to pitch linear (CUDA 2.2)
 - Global memory address is bound to a texture
 - 2D
 - Float/integer addressing, filtering, and clamp/repeat addressing modes similar to CUDA arrays

CUDA Texturing Steps

Host (CPU) code:

- Allocate/obtain memory (global linear/pitch linear, or CUDA array)
- Create a texture reference object
 - Currently must be at file-scope
- Bind the texture reference to memory/array
- When done:
 - Unbind the texture reference, free resources

Device (kernel) code:

- Fetch using texture reference
- Linear memory textures: tex1Dfetch()
- Array textures: tex1D() or tex2D() or tex3D()
- Pitch linear textures: tex2D()

Texture Example

```
Copy with Shift
global void
shiftCopy(float *odata,
                                              Using Global Memory and Textures
          float *idata,
                                            140
          int shift)
ł
                                         Effective Bandwidth (GB/s)
                                            120
                                                                         -GTX 280
  int xid = blockIdx.x * blockDim.x
                                                                           Global
                                            100
          + threadIdx.x;
                                                                         GTX 280
  odata[xid] = idata[xid+shift];
                                             80
                                                                           Texture
                                                                         -FX 5600
                                             60
                                                 Global
                                                                         FX 5600
                                             40
                                                                           Texture
texture <float> texRef;
                                             20
global void
                                              0
                                                0
                                                                 12
                                                                      16
textureShiftCopy(float *odata,
                                                                   14
                  float *idata,
                                                        Shift
                  int shift)
{
  int xid = blockIdx.x * blockDim.x
          + threadIdx.x;
  odata[xid] = tex1Dfetch(texRef, xid+shift);
}
```

Summary

- GPU hardware can achieve great performance on data-parallel computations if you follow a few simple guidelines:
 - Use parallelism efficiently
 - Coalesce memory accesses if possible
 - Take advantage of shared memory
 - Explore other memory spaces
 - Texture
 - Constant
 - Reduce bank conflicts

Recall a SM dynamically partitions resources:

Thread block slots
Thread slots
Registers
Shared memory
SM

Recall a SM dynamically partitions resources:

G80 Limits

8

768

8K registers / 32K memory

16K

83

We can have

8 blocks of 96 threads 4 blocks of 192 threads But not 8 blocks of 192 threads

85

We can have (assuming 256 thread blocks) 768 threads (3 blocks) using 10 registers each 512 threads (2 blocks) using 11 registers each

We can have (assuming 256 thread blocks) 768 threads (3 blocks) using 10 registers each 512 threads (2 blocks) using 11 registers each

Performance Cliff: Increasing resource usage leads to a dramatic reduction in parallelism

For example, increasing the number of registers, unless doing so hides latency of global memory access

CUDA Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_O ccupancy_calculator.xls

Kernel Launch Configuration

Grid Size Heuristics

•# of blocks > # of SM

Each SM has at least one work-group to execute
of blocks / # of SM > 2

Multi blocks can run concurrently on a SM

Work on another block if one block is waiting on barrier

I of blocks / # of SM > 100 to scale well to future device

Block Size Heuristics

- Block size should be a multiple of 32 (warp size)
- Want as many warps running as possible to hide latencies
- Minimum: 64. I generally use 128 or 256. But use whatever is best for your app.
- Depends on the problem, do experiments!

Latency Hiding

Key to understanding:

Instructions are issued in order

A thread blocks when one of the operands isn't ready:

Latency is hidden by switching threads

Conclusion:

Need enough threads to hide latency

Occupancy

 Occupancy: ratio of active warps per SM to the maximum number of allowed warps

Maximum number: 32 in Tesla, 48 in Fermi

Shared memory is partitioned among blocks Registers are partitioned among threads: <= 63 Thread block slots: <= 8 Thread slots: <= 1536 Any of those can be the limiting factor on how many threads can be launched at the same time on a SM

Latency Hiding Occupancy Calculation

•Assume global memory takes 400 cycles, we need 400/2 = 200 arithmetic instructions to hide the latency.

•For example, assume the code has 8 independent arithmetic instructions for every one global memory access. Thus 200/8~26 warps would be enough (54% occupancy).

 Note beyond 54%, in this example higher occupancy won't lead to performance increase. Register Dependency Latency Hiding

 If an instruction uses a result stored in a register written by an instruction before it, this is ~ 24 cycles latency

•So, we need 24/2=13 warps to hide register dependency latency. This corresponds to 27% occupancy

Concurrent Accesses and Performance

Increment a 64M element array

Two accesses per thread (load then store, but they are dependent) Thus, each warp (32 threads) has one outstanding transaction at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Occupancy Optimizations

Increase occupancy to achieve latency hiding

If adding a single instruction leads to significant perf drop, occupancy is the primary suspect

--ptxas-options=-v: output resource usage info

Compiler option –maxrregcount=n: per file

_launch_bounds__: per kernel

Use of template to reduce register usage

Dynamical allocating shared memory

After some point (generally 50%), further increase in occupancy won't lead to performance increase: got enough warps for latency hiding

float m = Md[i];
float f = a * b + c * d;
float f2 = m * f;

Data Prefetching

Prefetching data from global memory can effectively increase the number of independent instructions between global memory read and use

Data Prefetching

Recall tiled matrix multiply:

```
for (/* ... */)
{
    // Load current tile into shared memory
    _____syncthreads();
    // Accumulate dot product
    _____syncthreads();
}
```

```
Data Prefetching
```

Tiled matrix multiply with prefetch:

```
// Load first tile into registers
for (/* ... */)
{
    // Deposit registers into shared memory
    __syncthreads();
    // Load next tile into registers
    // Accumulate dot product
    __syncthreads();
}
```

Data Prefetching

Tiled matrix multiply with prefetch:

// Load first tile into registers

```
for (/* ... */)
{
    // Deposit registers into shared memory
    _____syncthreads();
    // Load next tile into registers
    // Accumulate dot product
    _____syncthreads();
}
```

Data Prefetching

Tiled matrix multiply with prefetch:

```
// Load first tile into registers
for (/* ... */)
{
    // Deposit registers into shared memory
    __syncthreads();
    // Load next tile into registers
    // Accumulate dot product
    __syncthreads();
}
```
Data Prefetching

Tiled matrix multiply with prefetch:

```
// Load first tile into registers
```

```
for (/* ... */)
{
    // Deposit registers into shared memory
    __syncthreads();
    // Load next tile into registers
    // Accumulate dot product
    __syncthreads();
}
109
```

Instruction Throughput Optimizations

Instruction Optimization

If you find out the code is instruction bound

Compute-intensive algorithm can easily become memorybound if not careful enough

Typically, worry about instruction optimization after memory and execution configuration optimizations

Fermi Arithmetic Instruction Throughputs

Int & fp32: 2 cycles fp64: 2 cycles Fp32 transendental: 8 cycles Int divide and modulo are expensive Divide by 2^n, use ">> n" Modulo 2^n, use "& (2^n - 1)"

Avoid automatic conversion of double to float

Adding "f" to floating literals (e.g. 1.0f) because the default is double Fermi default: -ftz=false, -prec-div=true, -prec-sqrt=true for IEEE compliance

Runtime Math Library and Intrinsics

Two types of runtime math library functions

func():

Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x, y)

___func():

Fast but lower accuracy (see prog. guide for full details) Examples: ______sin(x), ____exp(x), ___pow(x, y)

A number of additional intrinsics:

____sincos(), ___rcp(), ...

Full list in Appendix C.2 of the CUDA Programming Guide

-use-fast-math: forces every func() to ___func ()

Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:

Threads within a single warp take different paths

if-else, ...

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on performance

Avoid diverging within a warp

Example with divergence:

```
if (threadIdx.x > 2) {...} else {...}
```

Branch granularity < warp size

Example without divergence:

```
if (threadIdx.x / WARP_SIZE > 2) {...} else {...}
```

Branch granularity is a whole multiple of warp size

Profiler and Instruction Throughput

Visual Profiler derives:

Instruction throughput

Fraction of SP arithmetic instructions that could have been issued in the same amount of time

So, not a good metric for code with DP arithmetic or transcendentals

Extrapolated from one multiprocessor to GPU

Change the conditional statement and see how that affect the instruction throughput

Profiler Output 🗵 Summary Table 🔀						
Method	GPU 🚽 usec	%GPU time	glob mem read throughput (GB/s)	glob mem write throughput (GB/s)	glob mem overall throughp (GB/s)	t instruction throughput
1 fwd_3D_16x16_order8	3.09382e+06	82.15	46.9465	11.6771	58.6236	0.763973
2 memcpyHtoD	503094	13.35				
3 memcpyDtoH	168906	4.48				

Optimizing CPU/GPU interaction

Pinned (non-pageable) memory

Pinned memory enables:

faster PCIe copies (~2x throughput on FSB systems) memcopies asynchronous with CPU

momenties equipable on a with CPL

memcopies asynchronous with GPU

Usage

cudaHostAlloc / cudaFreeHost

instead of malloc / free

Additional flags if pinned region is to be shared between lightweight CPU threads

Implication:

pinned memory is essentially removed from virtual memory cudaHostAlloc is typically very expensive

Streams and Async API

Default API:

Kernel launches are asynchronous with CPU Memcopies (D2H, H2D) block CPU thread CUDA calls are serialized by the driver

Streams and async functions provide:

Memcopies (D2H, H2D) asynchronous with CPU Ability to concurrently execute a kernel and a memcopy Concurrent kernel in Fermi

Stream = sequence of operations that execute in issue-order on GPU Operations from different streams can be interleaved A kernel and memcopy from different streams can be overlapped

Overlap kernel and memory copy

Requirements:

D2H or H2D memcopy from <u>pinned</u> memory Device with compute capability \geq 1.1 (G84 and later) Kernel and memcopy in different, non-0 streams

Code:

cudaStream_t stream1, stream2; cudaStreamCreate(&stream1); cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1); kernel<<<grid, block, 0, stream2>>>(...); potentially overlapped

Stream Examples

Summary

Optimization needs an understanding of GPU architecture Memory optimization: coalescing, shared memory Execution configuration: latency hiding Instruction throughput: use high throughput inst Do measurements! Use the Profiler, simple code modifications

Compare to theoretical peaks

Instruction Mix

- Special Function Units (SFUs)
 - Use to compute
 ___sinf(),
 ___expf()
 - Only 4, each can execute 1 instruction per clock


```
Loop Unrolling
```

```
for (int k = 0; k < BLOCK_SIZE; ++k)
{
    Pvalue += Ms[ty][k] * Ns[k][tx];
}</pre>
```

Instructions per iteration One floating-point multiply One floating-point add What else?

for (int k = 0; k < BLOCK_SIZE; ++k)
{
 Pvalue += Ms[ty][k] * Ns[k][tx];
}</pre>

Other instructions per iteration

Update loop counter

Branch

Other instructions per iteration Update loop counter Branch Address arithmetic for (int k = 0; k < BLOCK_SIZE; ++k)
{
 Pvalue += Ms[ty][k] * Ns[k][tx];
}</pre>

Instruction Mix

2 floating-point arithmetic instructions
1 loop branch instruction
2 address arithmetic instructions
1 loop counter increment instruction

- Only 1/3 are floating-point calculations
 - But I want my full theoretical 1 TFLOP (Fermi)
 - Consider loop
 unrolling


```
Pvalue +=
   Ms[ty][0] * Ns[0][tx] +
   Ms[ty][1] * Ns[1][tx] +
   ...
   Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16
```

- No more loop
 - No loop count update
 - No branch
 - Constant indices no address arithmetic instructions

129

