
Basic CUDA Optimization

Bin ZHOU @ NVIDIA & USTCBin ZHOU @ NVIDIA & USTC
Jan.2015



AgendaAgenda
 Parallel Reduction
 Warp Partitioning
 Memory Coalescing
 Bank Conflicts
 Dynamic Partitioning of SM Resources
 Data Prefetching
 Instruction Mix
 Loop Unrolling

2



Efficient data-
parallel algorithms +parallel algorithms

Optimi ations based

+
Optimizations based
on GPU Architecture =

Maximum
Performance

3



Parallel ReductionParallel Reduction

 Recall Parallel Reduction (sum)

0 1 52 3 4 6 7

 S= 
N

ia
i 0

4



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

1 5 9 13

5



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

6



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

7



Parallel ReductionParallel Reduction

Similar to brackets for a basketball tournament
( )  f  log(n) passes for n elements

How would you implement this in CUDA?

8



shared float partialSum[];__shared__ float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; g

stride < blockDim.x;
stride *= 2)stride *= 2) 

{
__syncthreads();
if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride];
9

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



shared float partialSum[];__shared__ float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; g

stride < blockDim.x;
stride *= 2)stride *= 2) 

{ Computing the sum for the 
elements in shared memory

__syncthreads();
if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride];
10

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



shared float partialSum[];__shared__ float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; g

stride < blockDim.x;
stride *= 2)

Stride:
1, 2, 4, …

stride *= 2) 
{
__syncthreads();
if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride];
11

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



shared float partialSum[];__shared__ float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; g

stride < blockDim.x;
stride *= 2)stride *= 2) 

{
__syncthreads();
if (t % (2 * stride) == 0)

Why?

partialSum[t] += 
partialSum[t + stride];

12

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



shared float partialSum[];__shared__ float partialSum[];
// ... load into shared memory
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; g

stride < blockDim.x;
stride *= 2)stride *= 2) 

{ • Compute sum in same shared memory
• As stride increases, what do more threads do?

__syncthreads();
if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride];
13

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

0 1 52 3 4 6 7

Thread
0

Thread
1

0 1 52 3 4 6 7

1 5 9 131 5 9 13

6 226 22

2828

14



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

0 1 52 3 4 6 7

Thread
0

Thread
1

0 1 52 3 4 6 7

1 5 9 131 5 9 13

6 226 22

28

1st pass: threads 1, 3, 5, and 7 don’t do anything

28

p y g
Really only need n/2 threads for n elements

15



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

0 1 52 3 4 6 7

Thread
0

Thread
1

0 1 52 3 4 6 7

1 5 9 131 5 9 13

6 226 22

28

2nd pass: threads 2 and 6 also don’t do anything

28

2 pass: threads 2 and 6 also don t do anything

16



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

0 1 52 3 4 6 7

Thread
0

Thread
1

0 1 52 3 4 6 7

1 5 9 131 5 9 13

6 226 22

28

3rd pass: thread 4 also doesn’t do anything

28

3 pass: thread 4 also doesn t do anything

17



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

0 1 52 3 4 6 7

Thread
0

Thread
1

0 1 52 3 4 6 7

1 5 9 131 5 9 13

6 226 22

28

In general, number of required threads cuts in half after 

28

In general, number of required threads cuts in half after 
each pass

18



Parallel ReductionParallel Reduction

What if we tweaked the implementation?

19



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

20



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

4 6 8 10

21



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

22



Parallel ReductionParallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

23



shared float partialSum[]__shared__ float partialSum[]
// ... load into shared memory

i d i t t th dIdunsigned int t = threadIdx.x;
for(unsigned int stride = blockDim.x / 2; 

stride > 0;
stride /= 2)

stride: …, 4, 2, 1

stride /  2) 
{

th d ()__syncthreads();
if (t < stride)
partialSum[t] += 

partialSum[t + stride];

24
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

partialSum[t + stride];

}



shared float partialSum[]__shared__ float partialSum[]
// ... load into shared memory

i d i t t th dIdunsigned int t = threadIdx.x;
for(unsigned int stride = blockDim.x / 2; 

stride > 0;
stride /= 2)stride /  2) 

{
th d ()__syncthreads();

if (t < stride)
partialSum[t] += 

partialSum[t + stride];

25
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

partialSum[t + stride];

}



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

0 1 52 3 4 6 70 1 52 3 4 6 7

4 6 8 104 6 8 10

12 1612 16

2828

26



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

0 1 52 3 4 6 70 1 52 3 4 6 7

4 6 8 104 6 8 10

12 1612 16

28

1st pass: threads 4, 5, 6, and 7 don’t do anything

28

p y g
Really only need n/2 threads for n elements

27



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

0 1 52 3 4 6 70 1 52 3 4 6 7

4 6 8 104 6 8 10

12 1612 16

28

2nd pass: threads 2 and 3 also don’t do anything

28

2 pass: threads 2 and 3 also don t do anything

28



Parallel ReductionParallel Reduction

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

0 1 52 3 4 6 70 1 52 3 4 6 7

4 6 8 104 6 8 10

12 1612 16

28

3rd pass: thread 1 also doesn’t do anything

28

3 pass: thread 1 also doesn t do anything

29



P ll l R d tiParallel Reduction
What is the difference?What is the difference?

0        1        2        3       4        5        6        7 0        1        2        3       4        5        6        7

stride = 1, 2, 4, … stride = 4, 2, 1, …stride  1, 2, 4, … stride  4, 2, 1, …

30



P ll l R d tiParallel Reduction
What is the difference?What is the difference?

if (t < stride)
partialSum[t] += 

if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride];partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

31

stride  1, 2, 4, … stride  4, 2, 1, …



Warp PartitioningWarp Partitioning
Warp Partitioning:  how threads from a block are divided p g

into warps
Knowledge of warp partitioning can be used to:g p p g

Minimize divergent branches
Retire warps earlyp y

32



32 Threads

32 Threads... =

Block

32 Threads

32 Threads

Warps

=

• Blocks divide into groups of 32 
threads called warps.Warp Scheduler 0 Warp Scheduler 1

Warp and SIMT

threads called warps.• Warps are basic scheduling units• Warps always perform same 
instruction (SIMT)

warp 8 instruction 11

Warp Scheduler 0

warp 9 instruction 11

Warp Scheduler 1

Warp and SIMT instruction (SIMT)• Each thread CAN execute its own 
code path• Fermi SM has 2 warp schedulers

warp 2 instruction 42

warp 14 instruction 95
.

warp 3 instruction 33

warp 15 instruction 95
. • Fermi SM has 2 warp schedulers 

(Tesla has 1).• Context switching is free• A l f hid

warp 8 instruction 12

..

warp 14 instruction 96

warp 9 instruction 12

..

warp 3 instruction 34 • A lot of warps can hide memory 
latency

p

warp 2 instruction 43

p

warp 15 instruction 96

SP SP SP SP SP SP SP SP



Warp PartitioningWarp Partitioning
Partition based on consecutive increasing threadIdxg

34



Warp PartitioningWarp Partitioning
1D Block

th dId bet een 0 and 512 (G80/GT200)threadIdx.x between 0 and 512 (G80/GT200)
Warp n

Starts with thread 32n
Ends with thread 32(n + 1) – 1

Last warp is padded if block size is not a multiple of 32

35
0…31 32...63 64...95 96...127
Warp 0 Warp 1 Warp 2 Warp 3

…



Warp PartitioningWarp Partitioning
2D Block

Increasing threadIdx means
Increasing threadIdx.x

Starting with row threadIdx.y == 0

36



Warp PartitioningWarp Partitioning
2D Block

37
Image from http //co rses engr illinois ed /ece498/al/te tbook/Chapter5 C daPerformance pdfImage from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf



Warp PartitioningWarp Partitioning
3D Block

Start with threadIdx.z == 0
Partition as a 2D block

Increase threadIdx.z and repeat

38



Warp PartitioningWarp Partitioning
Divergent branches are within a warp!

39
Image from http //bps10 ida cda is ed /talks/03 fatahalian gp ArchTeraflop BPS SIGGRAPH2010 pdfImage from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 



Warp PartitioningWarp Partitioning
For warpSize == 32, does any warp have a divergent p y p g

branch with this code:

if (threadIdx.x > 15)
{
// ...// ...

}

40



Warp PartitioningWarp Partitioning
For any warpSize > 1, does any warp have a divergent y p y p g

branch with this code:

if (threadIdx.x > warpSize - 1)
{
// ...// ...

}

41



Warp PartitioningWarp Partitioning
Given knowledge of warp partitioning, which parallel g p p g p

reduction is better?

if (t < stride)
partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride]; partialSum[t + stride];partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

42



Warp PartitioningWarp Partitioning
Pretend warpSize == 2p

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

43



Warp PartitioningWarp Partitioning
1st Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

4 04
divergent
branches

0
divergent
branches

stride = 1, 2, 4, … stride = 4, 2, 1, …

44



Warp PartitioningWarp Partitioning
2nd Pass

W W W W W W W WWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

2
divergent

0
divergent
b h

stride = 1, 2, 4, … stride = 4, 2, 1, …

branches branches

45



Warp PartitioningWarp Partitioning
2nd Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

1
divergent
branch

1
divergent
branch

46



Warp PartitioningWarp Partitioning
2nd Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

1
divergent
branch

1
divergent
branch

47
Still diverge when number of 
elements left is <= warpSizeelements left is <  warpSize



Warp PartitioningWarp Partitioning
Good partitioning also allows warps to be retired early.

Better hard are tili ati nBetter hardware utilization

if (t t id )if (t % (2 * t id ) 0) if (t < stride)
partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)
partialSum[t] += 

partialSum[t + stride]; partialSum[t + stride];partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

48



Warp PartitioningWarp Partitioning
Parallel Reduction

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

49



Warp PartitioningWarp Partitioning
1st Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

0 20
warps
retired

2
warps
retired

stride = 1, 2, 4, … stride = 4, 2, 1, …

50



Warp PartitioningWarp Partitioning
1st Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

51



Warp PartitioningWarp Partitioning
2nd Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

1
warp

retired

2
warps
retired

stride = 1, 2, 4, … stride = 4, 2, 1, …

retiredretired

52



Warp PartitioningWarp Partitioning
2nd Pass

Warp Warp Warp Warp Warp Warp Warp WarpWarp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

stride = 1, 2, 4, … stride = 4, 2, 1, …

53



Memory CoalescingMemory Coalescing
Given a matrix stored row-major in global memory, what is a j g y,

thread’s desirable access pattern?

M2,0M1,0M0,0 M3,0

M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3M

54
I f htt //b 10 id d i d /t lk /03 f t h li A hT fl BPS SIGGRAPH2010 df

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 



Memory Optimization



Minimizing CPU-GPU data transfer
Host<->device data transfer has much lower bandwidth than global memory access.

8 GB/s (PCIe x16 Gen2) vs 156 GB/s & 515 Ginst/s (C2050)

Minimize transfer

Intermediate data can be allocated, operated, de-allocated directly on GPU

Sometimes it’s even better to recompute on GPU
Move CPU codes to GPU that do not have performance gains if it can reduce data 

transfer

Group transfer

One large transfer much better than many small ones: 10 microsec latency, 8 GB/s => 
latency dominated if data size < 80 KB

Overlap memory transfer with computation

Double buffering



Coalescing
Global memory latency: 400-800 cycles.

    f  !

Coalescing

The single most important performance consideration!
On Fermi, by default all global memory access are cached in L1. 

“ ”L1 can be by-passed by passing “-Xptxas –dlcm=cg” to nvcc: 
cache only in L2

If h d   f    f lli  i   L1 h  li   If cached: requests from a warp falling in a L1 cache line, one 
transaction

# transaction = # L1 line accessed# transaction = # L1 line accessed
If non-cached: same coalescing criterion

But transaction size can be reduced to 32B segmentBut transaction size can be reduced to 32B segment



Coalescingg
Global memory access of 32, 64, or 128-bit words by a half-warp 
of threads can result in as few as one (or two) transaction(s) if 

i   i   certain access requirements are met
Depends on compute capability

1.0 and 1.1 have stricter access requirements1.0 and 1.1 have stricter access requirements

Float (32-bit) data example:
32-byte segments

Global Memory

64-byte segments
128-byte segments

……

58

Half-warp of threads



Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 
contiguous 128B segments for 128 bit words)  not all threads need to contiguous 128B segments for 128-bit words), not all threads need to 
participate

Coalesces – 1 transaction
……

Out of sequence – 16 transactions
……

Misaligned – 16 transactions
……

59



Coalescing
Compute capability 1.2 and higher

Issues transactions for segments of 32B, 64B, and 128B
Smaller transactions used to avoid wasted bandwidthSmaller transactions used to avoid wasted bandwidth

1 transaction - 64B segment

……

2 transactions - 64B and 32B segments 

…… ……

1 transaction - 128B segment

……

60



Coalescing ExamplesCoalescing Examples
Effective bandwidth of small kernels that copy data

Eff f ff d id fEffects of offset and stride on performance

Two GPUs
GTX 280

Compute capability 1.3
Peak bandwidth of 141 GB/s

FX 5600
Compute capability 1.0
Peak bandwidth of 77 GB/s

61



Coalescing ExamplesCoalescing Examples
__global__ void offsetCopy(float *odata, float *idata,  

int offset)
{{  
int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;  
odata[xid] = idata[xid];

}}

62



Coalescing ExamplesCoalescing Examples
__global__ void strideCopy(float *odata, float *idata,  

int stride)
{{  
int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;  
odata[xid] = idata[xid];

}}

63



Coalescing ExamplesCoalescing Examples
Strided memory access is 
inherent in many 
multidimensional problems

St id i ll lStride is generally large 
(>> 18)

However …

Strided access to global 
memory can be avoidedmemory can be avoided 
using shared memory

64



Shared Memory

Hundred times faster than global memory~Hundred times faster than global memory

Cache data to reduce global memory accessesCache data to reduce global memory accesses

Threads can cooperate via shared memoryThreads can cooperate via shared memory

Use it to avoid non-coalesced accessUse it to avoid non coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

65



Shared Memory Architecture

Many threads accessing memoryMany threads accessing memory
Therefore, memory is divided into banks
Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle
Bank 0

A memory can service as many simultaneous 
accesses as it has banks

Bank 3
Bank 2
Bank 1
Bank 0

Multiple simultaneous accesses to a bank
result in a bank conflict Bank 6

Bank 5
Bank 4

Conflicting accesses are serialized Bank 7

66

Bank 15



Bank Addressing Examples

No Bank Conflicts No Bank Conflicts
Linear addressing 
stride == 1

Random 1:1 Permutation

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 5
Bank 4
Bank 3
Bank 2

Thread 5
Thread 4
Thread 3
Thread 2

Bank 5
Bank 4
Bank 3
Bank 2

Thread 5
Thread 4
Thread 3
Thread 2

Bank 7
Bank 6
Bank 5

Thread 7
Thread 6
Thread 5

Bank 7
Bank 6
Bank 5

Thread 7
Thread 6
Thread 5

Bank 15Thread 15 Bank 15Thread 15

67



Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflictsy
Linear addressing 
stride == 2

y
Linear addressing stride == 8

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

x8

Thread 4
Thread 3
Thread 2

Bank 5
Bank 4
Bank 3
Bank 2

Thread 5
Thread 4
Thread 3
Thread 2

B k 7

Bank 2

Thread 8
Bank 7
Bank 6
Bank 5

Thread 7
Thread 6
Thread 5

Bank 9
Bank 8
Bank 7

x8

Thread 11
Thread 10
Thread 9

Bank 15 Thread 15 Bank 15

68



Shared memory bank conflicts
Shared memory is ~ as fast as registers if there are no bank 
conflicts

warp_serialize profiler signal reflects conflicts

The fast case:
If all threads of a half-warp access different banks, there is no p ,
bank conflict
If all threads of a half-warp read the identical address, there is no 
bank conflict (broadcast)bank conflict (broadcast)

The slow case:
Bank Conflict: multiple threads in the same half-warp access the 
same bank
Must serialize the accesses

69

Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank



Shared Memory Example: Shared Memory Example: 
Transpose

Each thread block works on a tile of the matrix
Naïve implementation exhibits strided access to 
global memory

id t d tidata odata

El t t d b h lf f th d

70

Elements transposed by a half-warp of threads



Naïve TransposeLoads are coalesced, stores are not (strided by 
h i h ) height) 

__global__ void transposeNaive(float *odata, float *idata, 
int width, int height), g )

{
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;

idata odata

odata[index_out] = idata[index_in];
}

71



Coalescing through shared 
memory

Access columns of a tile in shared memory to Access columns of a tile in shared memory to 
write contiguous data to global memory
Requires syncthreads() since threads access Requires __syncthreads() since threads access 
data in shared memory stored by other threads

id t d tidata odata
tile

Elements transposed by a half-warp of threads

72



Coalescing through shared 

__global__ void transposeCoalesced(float *odata, float *idata,      
int width int height)

memory
int width, int height)

{
__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;  
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;  
int index_out = xIndex + (yIndex)*height;  

tile[threadIdx.y][threadIdx.x] = idata[index_in];

syncthreads();__syncthreads();

odata[index_out] = tile[threadIdx.x][threadIdx.y];
}

73



B k C fli t  i  TBank Conflicts in Transpose
16x16 shared memory tile of floats16x16 shared memory tile of floats

Data in columns are in the same bank
16-way bank conflict reading columns in tile  16 way bank conflict reading columns in tile  

Solution - pad shared memory array
shared float__shared__ float 

tile[TILE_DIM][TILE_DIM+1];

Data in anti-diagonals are in same bank idata odata
tileg tile

74

Elements transposed by a half-warp of threads



Padding  Shared MemoryPadding  Shared Memory

m00 m03m01 m02 m00 m03m01 m02m04m00

m10

m03

m13

m01

m11

m02

m12 m10m04 m11 m12

m04

m14

m20 m23m21 m22 m20m13 m14 m21m24

m30 m33m31 m32 m30m23 m24m22m34

B
0

B
1

B
2

B
3 m33 m34m31 m32

B
0

B
1

B
2

B
3



Textures in CUDA

Texture is an object for reading dataj g

Benefits:
D t i h dData is cached

Helpful when coalescing is a problem
Filtering

Linear / bilinear / trilinear interpolation 
Dedicated hardware

Wrap modes (for “out-of-bounds” addresses)p ( )
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinatesUsing integer or normalized coordinates

76



Texture Addressing
0    1    2    3    4

0
(2 5 0 5)

1

2

3

(2.5, 0.5)
(1.0, 1.0)

Wrap Clamp

3

Out-of-bounds coordinate is 
wrapped (modulo arithmetic)

Out-of-bounds coordinate is 
replaced with the closest 
boundaryy

0    1    2    3    4

1
0

(5.5, 1.5)
0    1    2    3    4

1
0

(5.5, 1.5)
1

2

3

1

2

3

77

3 3



CUDA Texture Types

Bound to linear memory
Global memory address is bound to a textureGlobal memory address is bound to a texture
Only 1D
Integer addressing
No filtering, no addressing modes

Bound to CUDA arrays
Block linear CUDA array is bound to a texturey
1D, 2D, or 3D
Float addressing (size-based or normalized)
FilteringFiltering
Addressing modes (clamping, repeat)

Bound to pitch linear (CUDA 2.2)
Gl b l dd i b d t t tGlobal memory address is bound to a texture
2D
Float/integer addressing, filtering, and clamp/repeat 
dd i d i il t CUDA

78

addressing modes similar to CUDA arrays



CUDA Texturing Steps

Host (CPU) code:
Allocate/obtain memory (global linear/pitch linear or CUDAAllocate/obtain memory (global linear/pitch linear, or CUDA 
array)
Create a texture reference object

Currently must be at file-scope
Bind the texture reference to memory/array
When done:When done:

Unbind the texture reference, free resources

Device (kernel) code:
Fetch using texture reference
Linear memory textures: tex1Dfetch()
Array textures: tex1D() or tex2D() or tex3D()
Pitch linear textures: tex2D()

79

Pitch linear textures: tex2D()



Texture Examplep
__global__ void 
shiftCopy(float *odata, 

fl t *id tfloat *idata, 
int shift)

{  
int xid = blockIdx.x * blockDim.x

+ th dId+ threadIdx.x;  
odata[xid] = idata[xid+shift];

}

texture <float> texRef;

__global__ void 
textureShiftCopy(float *odatatextureShiftCopy(float *odata, 

float *idata, 
int shift)

{
int xid = blockIdx x * blockDim xint xid = blockIdx.x * blockDim.x 

+ threadIdx.x;  
odata[xid] = tex1Dfetch(texRef, xid+shift);

}

80© NVIDIA Corporation 2009



Summary

GPU hardware can achieve great performance on g p
data-parallel computations if you follow a few simple 
guidelines:

Use parallelism efficiently
Coalesce memory accesses if possible
Take advantage of shared memoryTake advantage of shared memory
Explore other memory spaces

Texture
Constant

Reduce bank conflicts

81



SM Resource PartitioningSM Resource Partitioning

Recall a SM dynamically partitions resources:

Thread block slots

Thread slots

Registers

Thread slots

SShared memory

SM

82



SM Resource PartitioningSM Resource Partitioning

Recall a SM dynamically partitions resources:

G80 Limits

Thread block slots

Thread slots

8

768

G80 Limits   

Registers

Thread slots

S

768

8K registers / 32K memory

16KShared memory

SM

16K

83



SM Resource PartitioningSM Resource Partitioning
We can have

8 bl k  f 96 th d8 blocks of 96 threads
4 blocks of 192 threads

But not 8 blocks of 192 threads

G80 Li it

Thread block slots 8

G80 Limits   

Registers

Thread slots 768

8K registers / 32K memory

Shared memory

SM

16K

84



SM Resource PartitioningSM Resource Partitioning
We can have (assuming 256 thread blocks)( g )

768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

Thread block slots 8

G80 Limits   

Registers

Thread slots 768

8K registers / 32K memory

85

Shared memory

SM

16K

SM



SM Resource PartitioningSM Resource Partitioning
We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

Thread block slots 8

G80 Limits    More registers 
decreases thread-
l l ll li

Registers

Thread slots 768

8K registers / 32K memory

level parallelism
 Can it ever 

increase

86

Shared memory

SM

16K
increase 
performance?

SM



SM Resource PartitioningSM Resource Partitioning

Performance Cliff:  Increasing resource usage leads to a 
dramatic reduction in parallelismdramatic reduction in parallelism

For example, increasing the number of registers, unless doing 
so hides latency of global memory access

87



SM Resource PartitioningSM Resource Partitioning

CUDA Occupancy Calculator
h //d l d l d d / / d /CUDA Ohttp://developer.download.nvidia.com/compute/cuda/CUDA_O

ccupancy_calculator.xls

88



Kernel Launch Configurationg



Grid Size Heuristics

# of blocks > # of SM

Grid Size Heuristics

# of blocks  # of SM
Each SM has at least one work-group to execute

# of blocks / # of SM > 2# of blocks / # of SM  2
Multi blocks can run concurrently on a SM
Work on another block if one block is waiting on barrierWork on another block if one block is waiting on barrier

# of blocks / # of SM > 100 to scale well to future device



Block Size Heuristics 

Block size should be a multiple of 32 (warp size)

Block Size Heuristics 

Want as many warps running as possible to hide latencies
Minimum: 64. I generally use 128 or 256. But use whatever is 

best for your app.
Depends on the problem, do experiments!



Latency Hiding
Key to understanding:

Latency Hiding
y g

Instructions are issued in order
A thread blocks when one of the operands isn’t ready:p y
Latency is hidden by switching threads

Conclusion:
Need enough threads to hide latency



OccupancyOccupancy

Occupancy: ratio of active warps per SM to the maximum 
b  f ll d number of allowed warps

Maximum number: 32 in Tesla, 48 in Fermi



Dynamical Partitioning of SM ResourcesDynamical Partitioning of SM Resources

Shared memory is partitioned among blocks
R i   i i d  h d  <  63Registers are partitioned among threads: <= 63
Thread block slots: <= 8
Thread slots: <= 1536
Any of those can be the limiting factor on how many Any of those can be the limiting factor on how many 
threads can be launched at the same time on a SM



Latency Hiding Occupancy CalculationLatency Hiding Occupancy Calculation

Assume global memory takes 400 cycles, we need 400/2 = 200 
arithmetic instructions to hide the latency. 

F  l   h  d  h  8 i d d  i h i  For example, assume the code has 8 independent arithmetic 
instructions for every one global memory access. Thus 
200/8~26 warps would be enough (54% occupancy)200/8 26 warps would be enough (54% occupancy).

Note beyond 54%, in this example higher occupancy won’t 
lead to performance increase.lead to performance increase.



Register Dependency Latency Hiding 

If an instruction uses a result stored in a register 

Register Dependency Latency Hiding 

g
written by an instruction before it, this is ~ 24 cycles 
latencyy

So  we need 24/2=13 warps to hide register So, we need 24/2=13 warps to hide register 
dependency latency. This corresponds to 27% 
occupancyoccupancy



Concurrent Accesses and Performance
Increment a 64M element array

Two accesses per thread (load then store  but they are dependent)Two accesses per thread (load then store, but they are dependent)
Thus, each warp (32 threads) has one outstanding transaction 
at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent 
smaller accesses 
have the same 
effect as one larger 
one.

For example:For example:

Four 32-bit  ~=  one 
128-bit



Occupancy Optimizations
Increase occupancy to achieve latency hiding

Occupancy Optimizations

If adding a single instruction leads to significant perf drop, occupancy is the 
primary suspect

--ptxas-options=-v: output resource usage infoptxas options v: output resource usage info

Compiler option –maxrregcount=n: per file

__launch_bounds__: per kernel

Use of template to reduce register usage

Dynamical allocating shared memory

After some point (generally 50%), further increase in occupancy won’t lead 
to performance increase: got enough warps for latency hiding



Occupancy CalculatorOccupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xlshttp://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls



Data PrefetchingData Prefetching

Independent instructions between a global memory read 
d i    hid   land its use can hide memory latency

float m = Md[i];[ ]
float f = a * b + c * d;

float f2 = m * f;float f2 = m * f;

100



Data PrefetchingData Prefetching

Independent instructions between a global memory read 
d i    hid   land its use can hide memory latency

float m = Md[i]; Read global memory[ ]
float f = a * b + c * d;

float f2 = m * f;float f2 = m * f;

101



Data PrefetchingData Prefetching

Independent instructions between a global memory read 
d i    hid   land its use can hide memory latency

float m = Md[i];[ ]
float f = a * b + c * d;

float f2 = m * f;float f2 = m * f;

Execute instructions 

102

that are not dependent 
on memory read



Data PrefetchingData Prefetching

Independent instructions between a global memory read 
d i    hid   land its use can hide memory latency

float m = Md[i];[ ]
float f = a * b + c * d;

float f2 = m * f; Use global memory afterfloat f2 = m * f; Use global memory after 
the above line from 
enough warps hide the 
memory latency

103

y y



Data PrefetchingData Prefetching

Prefetching data from global memory can effectively 
increase the number of independent instructions increase the number of independent instructions 

between global memory read and use

104



Data PrefetchingData Prefetching

Recall tiled matrix multiply:

for (/* ... */)
{

// Load current tile into shared memory
__syncthreads();
// Accumulate dot product
__syncthreads();

}

105

}



Data PrefetchingData Prefetching

Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{

// Deposit registers into shared memory
__syncthreads();
// L d t til i t i t// Load next tile into registers
// Accumulate dot product

syncthreads();

106

__syncthreads();

}



Data PrefetchingData Prefetching

Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{

// Deposit registers into shared memory
__syncthreads();
// L d t til i t i t// Load next tile into registers
// Accumulate dot product

syncthreads();

107

__syncthreads();

}



Data PrefetchingData Prefetching

Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{

// Deposit registers into shared memory
__syncthreads();
// L d t til i t i t// Load next tile into registers
// Accumulate dot product

syncthreads();

Prefetch for next 
iteration of the loop

108

__syncthreads();

}



Data PrefetchingData Prefetching

Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)
{

// Deposit registers into shared memory
__syncthreads();
// L d t til i t i t// Load next tile into registers
// Accumulate dot product

syncthreads();

These instructions 
executed by enough 
threads will hide the 

109

__syncthreads();

}
memory latency of the 
prefetch



Instruction Throughput Optimizationsg p p



Instruction Optimization
If you find out the code is instruction bound

Instruction Optimization

Compute-intensive algorithm can easily become memory-
bound if not careful enough
Typically, worry about instruction optimization after 
memory and execution configuration optimizations



Fermi Arithmetic Instruction ThroughputsFermi Arithmetic Instruction Throughputs
Int & fp32: 2 cycles

fp64: 2 cycles

Fp32 transendental: 8 cycles

Int divide and modulo are expensiveInt divide and modulo are expensive
Divide by 2^n, use “>> n”
Modulo 2^n, use “& (2^n – 1)”, ( )

Avoid automatic conversion of double to float
Adding “f” to floating literals (e.g. 1.0f) because the default is double

Fermi default: -ftz=false, -prec-div=true, -prec-sqrt=true for IEEE compliance



Runtime Math Library and Intrinsics
Two types of runtime math library functions

Runtime Math Library and Intrinsics

func():
Slower but higher accuracy (5 ulp or less)
Examples: sin(x)  exp(x)  pow(x  y)Examples: sin(x), exp(x), pow(x, y)

__func():
Fast but lower accuracy (see prog. guide for full details)y ( p g g )
Examples: __sin(x), __exp(x), __pow(x, y)

A number of additional intrinsics:A number of additional intrinsics:
__sincos(), __rcp(), ...
Full list in Appendix C.2 of the CUDA Programming Guidepp g g

-use-fast-math: forces every func() to __func () 



Control Flow
Instructions are issued per 32 threads (warp)

Di  b h

Control Flow

Divergent branches:
Threads within a single warp take different paths

if-else, ...,
Different execution paths within a warp are serialized

Different warps can execute different code with no impact on performanceDifferent warps can execute different code with no impact on performance

Avoid diverging within a warp
E l  i h di  Example with divergence: 

if (threadIdx.x > 2) {...} else {...}

Branch granularity < warp sizeg y p
Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

B h l it  i   h l  lti l  f  iBranch granularity is a whole multiple of warp size



Profiler and Instruction Throughput

Visual Profiler derives:

Profiler and Instruction Throughput

Instruction throughput
Fraction of SP arithmetic instructions that could have been issued in the 
same amount of timesame amount of time

– So, not a good metric for code with DP arithmetic or 
transcendentals

E t l t d f   lti  t  GPUExtrapolated from one multiprocessor to GPU

Change the conditional statement and see how that affect the instruction throughput



Optimizing CPU/GPU interactionp g /



Pinned (non-pageable) memory
Pinned memory enables:

faster PCIe copies (~2x throughput on FSB systems)

Pinned (non pageable) memory

faster PCIe copies (~2x throughput on FSB systems)
memcopies asynchronous with CPU
memcopies asynchronous with GPUp y

Usage
cudaHostAlloc / cudaFreeHostcudaHostAlloc / cudaFreeHost

instead of malloc / free
Additional flags if pinned region is to be shared between lightweight CPU Additional flags if pinned region is to be shared between lightweight CPU 
threads

Implication:Implication:
pinned memory is essentially removed from virtual memory
cudaHostAlloc is typically very expensiveyp y y p



Streams and Async API
Default API:

Streams and Async API

Kernel launches are asynchronous with CPU
Memcopies (D2H, H2D) block CPU thread
CUDA calls are serialized by the driverCUDA calls are serialized by the driver

Streams and async functions provide:
Memcopies (D2H, H2D) asynchronous with CPU
Ability to concurrently execute a kernel and a memcopy
Concurrent kernel in FermiConcurrent kernel in Fermi

Stream = sequence of operations that execute in issue-order on GPU
Operations from different streams can be interleaved
A kernel and memcopy from different streams can be overlapped



Overlap kernel and memory copy
Requirements:

D2H  H2D  f  i d

Overlap kernel and memory copy

D2H or H2D memcopy from pinned memory

Device with compute capability ≥ 1.1 (G84 and later)

Kernel and memcopy in different, non-0 streams

Code:

cudaStream_t   stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

d M A ( d t   i  di  t 1 ) potentiallycudaMemcpyAsync( dst, src, size, dir, stream1 );

kernel<<<grid, block, 0, stream2>>>(…);
potentially
overlapped



Stream Examples
Kernel Memcpy

K1,M1,K2,M2 K1
M1
K2

M2

K1,K2,M1,M2 K1
M1
K2

M2

K1,M1,M2, K1
M1 M2M1 M2

K1,M2,M1, K1
M1M2

K1 M2 M2 K1K1,M2,M2, K1
M2M2



Summary
Optimization needs an understanding of GPU architecture

Summary

Memory optimization: coalescing, shared memory
Execution configuration: latency hiding
Instruction throughput: use high throughput inst
Do measurements!

Use the Profiler, simple code modifications
Compare to theoretical peaks



Instruction MixInstruction Mix

• Special Function 
Units (SFUs)Units (SFUs)
• Use to compute 

i f()__sinf(), 
__expf()

• Only 4, each 
can execute 1 
instruction per 
clock

122 Image: NVIDIA Fermi Whitepaper



Loop UnrollingLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Instructions per iteration
One floating point multiplyOne floating-point multiply

One floating-point add
What else?What else?

123



Loop UnrollingLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Other instructions per iteration
Update loop counterUpdate loop counter

124



Loop UnrollingLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Other instructions per iteration
Update loop counterUpdate loop counter

Branch

125



Loop UnrollingLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Other instructions per iteration
Update loop counterUpdate loop counter

Branch
Address arithmeticAddress arithmetic

126



Loop UnrollingLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Instruction Mix
2 floating point arithmetic instructions2 floating-point arithmetic instructions

1 loop branch instruction
2 address arithmetic instructions2 address arithmetic instructions

1 loop counter increment instruction

127



Loop UnrollingLoop Unrolling

• Only 1/3 are 
floating-pointfloating-point 
calculations
• But I want my 

full theoretical 1 
TFLOP (Fermi)

• Consider  loop 
unrolling

128 Image: NVIDIA Fermi Whitepaper



Loop UnrollingLoop Unrolling
Pvalue +=
Ms[ty][0] * Ns[0][tx] +
Ms[ty][1] * Ns[1][tx] +
...
Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

• No more loop
• No loop count update
• No branch
• Constant indices – no address arithmetic 

instructions
129

instructions



Loop UnrollingLoop Unrolling

Automatically:
##pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

Disadvantages to unrolling?

130


