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Recall Parallel Reduction (sum)
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Similar to brackets for a basketball tournament
log(N) passes for N elements

How would you implement this in CUDA!?
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// ... load iInto sharec memory

unsigned Int t = threadldx.x;

for (unsigned Int stride = 1;
stride < blockDIm.x;
stride *= 2)

__syncthreads();
IT (£t % (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



shared  float pa umf};

// ... load Into sharec memory
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unsigned Int t = threadldx.x;

for (unsigned Int stride = 1;
stride < blockDIm.x;
stride *= 2)

Computing the sum for the
{ elements in shared memory

__syncthreads();
IT (£t % (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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// ... load iInto sharec memory
unsigned Int t = threadldx.x;

for (unsigned Int stride = 1;
stride < blockDim.x; | Stride:
stride *= 2)

__syncthreads();
IT (£t % (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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// ... load iInto sharec memory

unsigned Int t = threadldx.x;

for (unsigned Int stride = 1;
stride < blockDIm.x;
stride *= 2)

__syncthreads() ;| why?

It (t % (2 * stride) == 0)
partialSum[t] +=

partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



__shared_ float pa umf};
// ... load iInto sharec memory
unsigned Int t = threadldx.x;
for (unsigned Int stride = 1;
stride < blockDIm.x;

stride *= 2)

{  Compute sum in same shared memory
» As stride increases, what do more threads do?

__syncthreads(); |

iIT (€t % (2 * stride) == 0)
partialSum[t] +=

partialSum[t + stride];
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
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st pass: threads |, 3, 5, and 7 don’ t do anything
Really only need n/2 threads for n elements
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2"d pass: threads 2 and 6 also don’ t do anything
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3rd pass: thread 4 also doesn’ t do anything
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What if we tweaked the implementation!?
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__Shared Ff

// ... load Into shared memory

unsigned Int t = threadldx.x;

for(unsigned Int stride = blockDim.x / 2;
stride > O;

stride /= 2)

D
f#

partia !Ser1
pc

stride: ..., 4,2, 1
__syncthreads(); F%%%%%%égij
IT (t < stride) el

_ gﬁ--D---
partialSum[t] += EEEEEEE
partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html



__Shared f

// ... load Into shared memory

unsigned Int t = threadldx.x;

for(unsigned Int stride = blockDiIm.x / 2;
stride > O;

stride /= 2)

part tia !Ser1

D
f#

__syncthreads();

if (t < stride)

partialSum[t] +=
partialSum[t + stride];

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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|s¢ pass: threads 4, 5, 6, and 7 don’ t do anything
Really only need n/2 threads for n elements
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2"d pass: threads 2 and 3 also don’ t do anything
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3rd pass: thread | also doesn’ t do anything
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What is the difference!?
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4,2, 1, ...

stride

1,2,4, ...

stride
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Parallel Reduction

What is the difference!?

IT (t % (2 * stride) == 0) IT (t < stride)
partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride=1, 2,4, ... stride=4,2,1, ...
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Warp Partitioning: how threads from a block are divided

into warps

Knowledge of warp partitioning can be used to:
Minimize divergent branches
Retire warps early

32



32 Threads

32 Threads

32 Threads
Warps

Block

— - ® Blocks divide into groups of 32
Warp Scheduler | Warp Scheduler 1| threads called warps.
® Warps are basic scheduling units
® Warps always perform same
instruction (SIMT)

® Each thread CAN execute its own
RETRTITIRIIRY  CERTIISY  code path

: : ® Fermi SM has 2 warp schedulers
EEE (Tesia has 1)

® Context switching is free

w w ® Alot of warps can hide memory

w
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Warn Partitionino
warp rFartitioning
| D Block
threadldx.Xx between 0 and 512 (G80/GT200)
Warp n

Starts with thread 32n
Ends with thread 32(n + 1) - 1

Last warp is padded if block size is not a multiple of 32

Warp O Warp 1 Warp 2 Warp 3
0...31 32...63 64...95 96...127

35




Warp Partitioning

2D Block

Increasing threadldx means
Increasing threadldx.X
Starting with row threadldx.y ==

36
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Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf
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3D Block
Start with threadldx.z ==

Partition as a 2D block
Increase threadldx.z and repeat
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warp rartitioning
Divergent branches are within a warp!

(D | 0 O O I R

Time (clocks)

ALU1T AlL2 ... ... ALUS

<unconditional
shader code>»

if (x > @) {

refl = Ka;

H

<resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 peak performance

Image from: http://bpsl10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_ BPS SIGGRAPH2010.pdf



For warpSize == 32, does any warp have a divergent

40

branch with this code:

IT (threadldx.x > 15)

1
//

}
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Warp Partitioning

For any warpSize > 1, does any warp have a divergent
branch with this code:

IT (threadldx.x > warpSize - 1)

1
// ...

}

41



Warp Partitioning

Given knowledge of warp partitioning, which parallel
reduction is better!?

it (€t % (2 * stride) == 0) iIT (t < stride)

partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride=1, 2,4, ... stride=4,2,1, ...

42
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Pretend warpSize == 2
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
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stride =1, 2, 4, stride=4,2,1, ...
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Warp Partitioning

|st Pass
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
N I O D O | o
(m ] :

divergent( - g - g ) | —h— |_| - |:| - divergent
branches | ¥ . \ s branches

| [ 3 I |
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stride=1, 2,4, ... stride=4,2,1, ...
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2" Pass
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
AN o O N T
ﬁ-ﬁ-ﬁ-ﬁ- o o o ) [
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stride =1, 2, 4, stride=4,2,1, ...

45

0
divergent
branches



N T gadcd e a2 am
wdalp al UuUOlLl11lg
2" Pass
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
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stride =1, 2, 4, stride=4,2,1, ...
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warp 111 g
2" Pass
Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3

N N A T

] o 5 o o

A/ L / ] Yo v ]

| CC ) o |
mMuQ------ EDC I
branch

stride =1, 2, 4, stride=4,2,1, ...
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Still diverge when number of
elements left is <= warpSize

1
divergent
branch



Good partitioning also allows warps to be retired early.
Better hardware utilization

iIT (£ % (2 * stride) == 0) IT (t < stride)

partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride=1, 2,4, ... stride=4,2,1, ...
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Parallel Reduction

Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 1 2 3
AR D o AN NN O
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stride =1, 2, 4, stride=4,2,1, ...
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Warp Partitioning

| st Pass

Warp

Warp Warp Warp Warp
0 1 2 3
R D o
ol [
s |1 ) ()
retired ve f— | e 11—
[ {0 T )
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stride =1, 2, 4,
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stride=4,2,1, ...
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| st Pass
Warp Warp Warp Warp Warp Warp Warp Warp
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Warp Partitioning

2nd Pass

Warp Warp Warp
0 ) 3
(L] |
i
| = IMENtE
2 L 7 1
- M N
warps =) e e warp
retired [ retired
e £ ]
- - -

stride=1, 2,4, ... stride=4,2,1, ...

52



Warp

Warp

Warp
2

Warp

[ e

[ ]
1
[ ]
I N
H ™

(]

-

BN

53

stride=1, 2,

[]
—
[]
[ ]
4

Warp Warp Warp Warp
0 i 2z 3
Nt
o o [

B i
[
H BN NN NN

stride=4,2,1, ...




Memory Coalescing

Given a matrix stored row-major in global memory, what is a
thread" s desirable access pattern?

|VIO,l |\/Il,l |VIZ,l |VI3,1
MO,Z M1,2 I\/|2,2 M3,2

|\/|0,3 |\/|1,3 M2,3 M3,3

|\/IO,l |\/Il,l |\/|2,1 M3,1 MO,Z I\/|1,2 M2,2 M3,2 M0,3 Ml,3 M2,3 M3,3

54
Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_ BPS SIGGRAPH2010.pdf



Memory Optimization



Minimizing CPU-GPU data transfer

sHost<->device data transfer has much lower bandwidth than global memory access.
+8 GB/s (PCle x16 Gen2) vs 156 GB/s & 515 Ginst/s (C2050)

+Minimize transfer
sIntermediate data can be allocated, operated, de-allocated directly on GPU
sSometimes it s even better to recompute on GPU

¢ Move CPU codes to GPU that do not have performance gains if it can reduce data
transfer

s Group transfer

2One large transfer much better than many small ones: 10 microsec latency, 8 GB/s =>
latency dominated if data size < 80 KB

Overlap memory transfer with computation

Double buffering



Coalescing
»Global memory latency: 400-800 cycles.
The single most important performance consideration!
On Fermi, by default all global memory access are cached in LI.

LI can be by-passed by passing “-Xptxas —dlcm=cg” to nvcc:
cache only in L2

If cached: requests from a warp falling in a L1 cache line, one
transaction

# transaction = # L1 line accessed
If non-cached: same coalescing criterion

But transaction size can be reduced to 32B segment



Coalescing

> Global memory access of 32, 64, or 128-bit words by a half-warp
of threads can result in as few as one (or two) transaction(s) if
certain access requirements are met

> Depends on compute capability

o 1.0 and |.1 have stricter access requirements

> Float (32-bit) data example:

Global Memory
INEEEEEE IEEEEEEE EEEEEEEE I EEEEEEE EEEEEEEE I EEEEEEE

Half-warp of threads



Coalescing
Compute capability 1.0 and 1.1

¢ K-th thread must access k-th word in the segment (or k-th word in 2
contiguous |128B segments for |28-bit words), not all threads need to
participate

Coalesces — 1 transaction
-  AINEEEEE EEEEEEEEEEEEEEEE EEEEEEEn -

RRRARRRARARANN

Out of sequence — 16 transactions
- AIHNNNEEEE EEEEEEEEEEEEEEEE EEEEEEEN -

XTI

Misaligned — 16 transactions
- AINNNEEEE EEEEEEEEEEEEEEEE EEEEEEEN -

[117777777777777

59



Coalescing
Compute capability 1.2 and higher

> Issues transactions for segments of 32B, 64B, and 128B

> Smaller transactions used to avoid wasted bandwidth

1 transaction - 64B segment
INEEEEEE EEEEEESE NSNS EEEEEEEE N EEEEEEE I EEEEEEE

XTI 781

2 transactions - 64B and 32B segments
INEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE

[117777777777777

1 transaction - 128B segment
INEEEEEE EEEEEESE NSNS EEEEEEEE N EEEEEEE I EEEEEEE

[177777777777777 .



Coalescing Examples

 Effective bandwidth of small kernels that copy data
« Effects of offset and stride on performance

« Two GPUs
“ GTX 280
“ Compute capability 1.3
“ Peak bandwidth of 141 GB/s
“ FX 5600
“ Compute capability 1.0
“ Peak bandwidth of 77 GB/s

61



Coalescing Examples

__global __ void offsetCopy(float *odata, float *idata,
int )
{
int xid = blockldx.x * blockDim.x + threadldx.x +
odata[xi1d] = i1data[xid];

}
Copy with Offset

+ GTX280
60 -4 FX 5600

Effective Bandwidth (GB/s)

0 2 4 6 B8 10 12 14 16
Offset

62



Coalescing Examples

__global __ void strideCopy(float *odata, float *idata,

int )
{
int xid = (blockldx.x*blockDim.x + threadldx.x)* ;
odata[xi1d] = i1data[xid];
¥ Copy with Stride
120
@ 100
o
S
— B0
i=
_E &0 ¥ GTX280
= -4 FX5600
@ 4p
2
3 20
m

0
0 2 4 6 8 10 12 14 16 18

Stride

63



Coalescing Examples

« Strided memory access is Copy with Stride
Inherent in many
multidimensional problems

« Stride is generally large
(>>18)

=y
I
=

=k
]
=]

oo
=

-+ GTX230
4 FX5600

Effective Bandwidth (GB/s)
o] £ o
(=] = (]

=

However ... 0 2 4 6 8 10 12 14 16 18

Stride

« Strided access to global
memory can be avoided
using s/ared memaory

64



Shared Memory

@ -Hundred times faster than global memory
@ Cache data to reduce global memory accesses
@ Threads can cooperate via shared memory

Q Use it to avoid non-coalesced access

N~ Stage loads and stores in shared memory to re-order non-
coalesceable addressing



Shared Memory Architecture

@ Many threads accessing memory
 Therefore, memory is divided into
“ Successive 32-bit words assigned to successive banks

@ Each bank can service one address per cycle

v A memory can service as many simultaneous
accesses as it has banks

- Multiple simultaneous accesses to a bank
resultin a
- Conflicting accesses are serialized

o
o
o

66



Bank Addressing Examples

«“ No Bank Conflicts “ No Bank Conflicts

“ Linear addressing ¥ Random 1:1 Permutation
stride ==




Bank Addressing Examples

> 2-way Bank Conflicts ~ 8-way Bank Conflicts

“ Linear addressing  Linear addressing stride ==8
stride ==

X8




Shared memory bank conflicts

v
U profiler signal reflects conflicts
>
¥ |f all threads of a half-warp access , there is no
bank conflict
¥ |f all threads of a half-warp read the , there is no
bank conflict (broadcast)
-

¥ Bank Conflict: multiple threads in the same half-warp access the
same bank

“ Must serialize the accesses

69



Shared Memory Example:

Transpose
3 EacCh thread block works on a tile of the matrix

“ Naive implementation exhibits strided access to
global memory

Idata odata

~N

Elements transposed by a half-warp of threads

70



Ned¥fs HEXBAPRER stores are not (strided by
height)
__global __ void transposeNaive(float *odata, float *i1data,

int width, Int height)
{

Int xIndex
Int ylndex

blockldx.x * TILE DIM + threadldx.Xx;
blockldx.y * TILE DIM + threadldx.y;

int = XIndex + width * ylndex;
int = yIndex + height * xIndex;
odata[ ] = idata[ 1;

idata odata

71



Coalescing through shared
memory

> Access columns of a tile in shared memory to
write contiguous data to global memory

> Requires __syncthreads() since threads access
data in shared memory stored by other threads

Idata odata
tile

D ‘
D\

Elements transposed by a half-warp of threads

72



Coalescing through shared
memory

__global _ void transposeCoalesced(float *odata, float *idata,
int width, iInt height)

1
__shared__ float [TILE_DIM]LTILE_DIM];

Iint xIndex blockldx.x * TILE DIM + threadldx.Xx;
int ylndex blockldx.y * TILE_DIM + threadldx.y;
INt Index_iIn = xIndex + (yIndex)*width;

xIndex = blockldx.y * TILE DIM + threadldx.x;
yIndex = blockldx.x * TILE DIM + threadldx.y;
int index out = xIndex + (yIndex)*height;

[threadldx.y][threadldx.x] = idata[index_in];

odata[index out] = [threadldx.x][threadldx.y];
+

73



Bank Conflicts in Transpose

v 16x16 shared memory tile of floats
¢ Data in columns are in the same bank
¢ |6-way bank conflict reading columns in tile

> Solution - pad shared memory array

@« sShared float

tlle[TILE DIM][TILE _DIM+1]:

é oqgat
¢ Data in antl- lagonals a(re in same ban

N
$_

Elements transposed by a half-warp of threads

74
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« Data is cached
“ Helpful when coalescing is a problem
“ Filtering
“ Linear / bilinear / trilinear interpolation
“ Dedicated hardware
“ Wrap modes (for “out-of-bounds” addresses)
“ Clamp to edge / repeat
“ Addressable in 1D, 2D, or 3D
“ Using integer or normalized coordinates

76



Texture Addressing

O 1 2 3 4

w N - O

“ Out-of-bounds coordinate is
wrapped (modulo arithmetic)

0O 1 2 3 4

w N - O

(1.0, 1.0)

“ Out-of-bounds coordinate is
replaced with the closest
boundary

0O 1 2 3 4

w N - O

77
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COC

Global memory address is bound to a texture
Only 1D

Integer addressing

No filtering, no addressing modes

Block linear CUDA array is bound to a texture
1D, 2D, or 3D

Float addressing (size-based or normalized)
Filtering

Addressing modes (clamping, repeat)

Global memory address is bound to a texture
2D

Float/integer addressing, filtering, and clamp/repeat
addressing modes similar to CUDA arrays

78



CUDA Texturing Steps

J

“ Allocate/obtain memory (global linear/pitch linear, or CUDA

array)

“ Create a texture reference object
“ Currently must be at file-scope

“ Bind the texture reference to memory/array

“ When done:
“ Unbind the texture reference, free resources

“ Fetch using texture reference

“ Linear memory textures: tex1Dfetch()

¥ Array textures: tex1D() or tex2D() or tex3D()
“ Pitch linear textures: tex2D()

79



Texture Example

__global __ void
shiftCopy(float *odata,
float *i1data,
int )
{
int xid = blockldx.x * blockDim.x
+ threadldx.X;
odata[xid] = idata[xid+
+

1:

texture <float> :

__global __ void
textureShifttCopy(float *odata,
float *idata,
int )
{
int xid = blockldx.x * blockDim.x
+ threadldx.X;
odata[xid] = ( .
+

xXi1d+

© NVIDIA Corporation 2009

Copy with Shift

Using Global Memory and Textures
140

£ 120 BGTX 280
E 100 Global
£ - GTX 280
=2 BOD Texture
= = ¥ FX 5600
5 Global
ﬁ a0 -4 FX 5600
= Texture
2 20

w g

0 2 4 6 B 10 12 14 16
Shift
);

80



« Use parallelism efficiently
“ Coalesce memory accesses if possible
“ Take advantage of shared memory

“ Explore other memory spaces
“ Texture
“ Constant

“ Reduce bank conflicts

81



SM Resource Partitioning

Recall a SM dynamically partitions resources:

Thread block slots

Thread slots

Registers

SM

82
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Recall a SM dynamically partitions resources:

G80 Limits

Thread block slots

Thread slots

Registers

SM

8
768

8K registers / 32K memory
16K



SM Resource Partitio
We can have
8 blocks of 96 threads
4 blocks of 192 threads
But not 8 blocks of 192 threads

G80 Limits
Thread block slots 8
Thread slots 768
Registers 8K registers / 32K memory

SM

84



SM Resource Partitioning

We can have (assuming 256 thread blocks)
768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using I | registers each

G80 Limits
Thread block slots 8
Thread slots 768
Registers 8K registers / 32K memory

% SM
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We can have (assuming 256 thread blocks)
768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using | | registers each

More registers

decreases thread-

level parallelism
Can it ever
Increase

performance?
86

G80 Limits

Thread block slots

Thread slots

Registers

SM

8
768

8K registers / 32K memory
16K
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Performance Cliff: Increasing resource usage leads to a
dramatic reduction in parallelism

For example, increasing the number of registers, unless doing
so hides latency of global memory access
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CUDA Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_O
ccupancy_calculator.xls




Kernel Launch Configuration



Grid Size Heuristics

+# of blocks > # of SM

vEach SM has at least one work-group to execute
+# of blocks / # of SM > 2

@Multi blocks can run concurrently on a SM

*Work on another block if one block is waiting on barrier
«# of blocks / # of SM > 100 to scale well to future device



Block Size Heuristics

»Block size should be a multiple of 32 (warp size)
>Want as many warps running as possible to hide latencies

+Minimum: 64. | generally use 128 or 256. But use whatever is
best for your app.

+Depends on the problem, do experiments!



Latency Hiding

Key to understanding:
Instructions are issued in order
A thread blocks when one of the operands isn’ t ready:
Latency is hidden by switching threads
Conclusion:
Need enough threads to hide latency



»Occupancy: ratio of active warps per SM to the maximum
number of allowed warps

Maximum number: 32 in Tesla, 48 in Fermi



Shared memory is partitioned among blocks
Registers are partitioned among threads: <= 63
Thread block slots: <=8

Thread slots: <= 1536

Any of those can be the limiting factor on how many
threads can be launched at the same time on a SM



»Assume global memory takes 400 cycles, we need 400/2 = 200
arithmetic instructions to hide the latency.

sFor example, assume the code has 8 independent arithmetic
instructions for every one global memory access. Thus
200/8~26 warps would be enough (54% occupancy).

>Note beyond 54%, in this example higher occupancy won’ t
lead to performance increase.
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Regis y

If an instruction uses a result stored in a register

written by an instruction before it, this is ~ 24 cycles
latency

>So, we need 24/2=13 warps to hide register

dependency latency. This corresponds to 27%
occupancy



Concurrent Accesses and Performance

Increment a 64M element array

Two accesses per thread (load then store, but they are dependent)

Thus, each warp (32 threads) has one outstanding transaction
at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

120
100

80

GB/s g0

20

0

-
/)

40 -

—64-hit access

128-hit access

—32-bitaccess |

[/
/4

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor

Several independent
smaller accesses
have the same
effect as one larger
one.

For example:

Four 32-bit ~= one
128-bit



Occupancy Optimizations

>Increase occupancy to achieve latency hiding

If adding a single instruction leads to significant perf drop, occupancy is the
primary suspect

--ptxas-options=-v: output resource usage info
Compiler option —maxrregcount=n: per file
__launch_bounds__: per kernel

Use of template to reduce register usage
Dynamical allocating shared memory

After some point (generally 50%), further increase in occupancy won' t lead
to performance increase: got enough warps for latency hiding
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Independent instructions between a global memory read
and its use can hide memory latency

float m
float T + Cc * d;
float f2 = m * f;

MdLu]:
a > b
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Independent instructions between a global memory read
and its use can hide memory latency

float m “—| Read global memory
float T + Cc * d;
float f2 = m * F;

Md[1];
a > b
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Independent instructions between a global memory read
and its use can hide memory latency

float m
float T + Cc * d;
float f2 = m * f;

Mdfu]:
a > b

Execute instructions
that are not dependent
102 on memory read




Independent instructions between a global memory read
and its use can hide memory latency

float m
float T c * d;
float 2 = m * T- “—1 Use global memory after

the above line from
enough warps hide the
memory latency

MdLu]:
a>* b+
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Prefetching data from global memory can effectively
increase the number of independent instructions
between global memory read and use



Recall tiled matrix multiply:

for (/* ... */)

{
// Load current tile Into shared memory
__syncthreads();
// Accumulate dot product
__syncthreads();

}
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Data Prefetching

Tiled matrix multiply with prefetch:

// Load Tirst tile Into registers

for (/* ... */)

{
// Deposit registers into shared memory
__syncthreads();
// Load next tile Into registers
// Accumulate dot product
__syncthreads();

106



Tiled matrix multiply with prefetch:

Y/ Load Tirst tile Into registers

for (/* ... */)
{

// Deposit registers into shared memory

__syncthreads();
// Load next tile Into registers

// Accumulate dot product
__syncthreads();
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Tiled matrix multiply with prefetch:

// Load Tirst tile Into registers

for (/* ... */)
{

// Deposit registers into shared memory

__syncthreads();

A

Y/ Load next tile Into registers
// Accumulate dot product
__syncthreads();

108

Prefetch for next
iteration of the loop




Tiled matrix multiply with prefetch:
// Load Tirst tile Into registers

for (/* ... */)
{

// Deposit registers into shared memory
__syncthreads();

// Load next tile Into registers These instructions
¥/ Accumulate dot product executed by enough

syncthreads(); threads will hide the
o ’ memory latency of the

o prefetch

A




Instruction Throughput Optimizations



T
1

If you find out the code is instruction bound

Compute-intensive algorithm can easily become memory-
bound if not careful enough

Typically, worry about instruction optimization after
memory and execution configuration optimizations



Fermi Arithmetic Iz

Int & fp32: 2 cycles
fp64: 2 cycles
Fp32 transendental: 8 cycles
Int divide and modulo are expensive
Divide by 2”n, use “>>n”
Modulo 2*n, use “& 2*n—1)”
Avoid automatic conversion of double to float
Adding “f” to floating literals (e.g. 1.0f) because the default is double

Fermi default: -ftz=false, -prec-div=true, -prec-sqrt=true for |[EEE compliance



Runtime Math Library and Intrinsics

Two types of runtime math library functions
func():
Slower but higher accuracy (5 ulp or less)
Examples: sin(x), exp(x), pow(X, y)
__func():
Fast but lower accuracy (see prog. guide for full details)

Examples: _ sin(x), __exp(x), __pow(x, y)

A number of additional intrinsics:
__sincos(), __rcp(), -.-
Full list in Appendix C.2 of the CUDA Programming Guide

-use-fast-math: forces every func() to __ func ()



Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:
Threads within a single warp take different paths
if-else, ...

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on performance

Avoid diverging within a warp
Example with divergence:
iIT (threadldx.x > 2) {...} else {...}
Branch granularity < warp size
Example without divergence:

iIT (threadldx.x /7 WARP_SIZE > 2) {...} else {...}

Branch granularity is a whole multiple of warp size



Profiler and Instruction Throughput

Visual Profiler derives:
Instruction throughput

Fraction of SP arithmetic instructions that could have been issued in the
same amount of time

— So, not a good metric for code with DP arithmetic or
transcendentals

Extrapolated from one multiprocessor to GPU

Change the conditional statement and see how that affect the instruction throughput

Profiler Cubput Summaty Table [
GPL o ) glab mem read throughput | glob mem write throoghpot | glab merm overall throughpdt .
Method User eiaPU Eime (GBs) (GBs) (GBs) instruction throughput
1 EFWd_3D_1E|X1E|_DFdE-‘I’E‘§ 3.09382e+06 82,15 46,9465 11.6771 55,6236 0.763973
2 | memcpyHEaD S03094 13,35

3 | mermcpyDiaH 165906 4,48



Optimizing CPU/GPU interaction



Pinned (non-pageable) memory

Pinned memory enables:
faster PCle copies (~2x throughput on FSB systems)
memcopies asynchronous with CPU

memcopies asynchronous with GPU

Usage
cudaHostAlloc / cudaFreeHost
instead of malloc / free

Additional flags if pinned region is to be shared between lightweight CPU
threads

Implication:
pinned memory is essentially removed from virtual memory

cudaHostAlloc is typically very expensive



Streams and Async API

Default API:
Kernel launches are asynchronous with CPU
Memcopies (D2H, H2D) block CPU thread
CUDA calls are serialized by the driver

Streams and async functions provide:
Memcopies (D2H, H2D) asynchronous with CPU

Ability to concurrently execute a kernel and a memcopy

Stream = sequence of operations that execute in issue-order on GPU
Operations from different streams can be interleaved

A kernel and memcopy from different streams can be overlapped



Overlap kernel and memory copy

Requirements:
D2H or H2D memcopy from pinned memory
Device with compute capability 2 |.1 (G84 and later)

Kernel and memcopy in different, non-0 streams

Code:
cudaStream_t streaml, stream2;
cudaStreamCreate(&stream|);

cudaStreamCreate(&stream?2);

cudaMemcpyAsync( dst, src, size, dir, stream| ); potentially
kernel<<<grid, block, 0, stream2>>>(...); overlapped



Stream Examples
Kernel BVEmcpyd
K1,M1,K2,M2 K1 K2
M1 M2
K1,K2,M1,M2 K1 K2
M1 M2
K1,M1,M2, K1
M1 M2
K1,M2,M1, K1
M2 M1
K1,M2,M2, K1



Optimization needs an understanding of GPU architecture
Memory optimization: coalescing, shared memory
Execution configuration: latency hiding

Instruction throughput: use high throughput inst

Do measurements!

Use the Profiler, simple code modifications
Compare to theoretical peaks



- Special Function
Units (SFUSs)

- Use to compute
__sinf(),

__exptQ)

« Only 4, each
can execute 1
Instruction per
clock

> 122 Image: NVIDIA Fermi Whitepaper

Fermi Streaming Multiprocessor (SM)



Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
{

}

Pvalue += Ms[ty][k] * Ns[k][tx];:

Instructions per iteration
One floating-point multiply

One floating-point add
What else!?
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for (int k = 0; k < BLOCK_SIZE;@
{

Pvalue += Ms[ty][k] * Ns[k][tx];:
ks

Other instructions per iteration

Update loop counter



Loop Unrolling

for (int k = ;@LOCK@; ++k)
1

Pvalue += Ms[ty][k] * Ns[k][tx];:
ks

Other instructions per iteration
Update loop counter

Branch
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Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

¥
Other instructions per iteration

Update loop counter
Branch
Address arithmetic
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for (int k = 0; k < BLOCK_SIZE; ++k)

{
Pvalue += Ms[ty][k] * Ns[k][tx];:

}

Instruction Mix
2 floating-point arithmetic instructions
| loop branch instruction
2 address arithmetic instructions

| loop counter increment instruction
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- Only 1/3 are
floating-point
calculations

- But | want my
full theoretical 1
TFLOP (Fermi)

Consider loop
unrolling

CUDA Core

> 128 Image: NVIDIA Fermi Whitepaper

Fermi Streaming Multiprocessor (SM)
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Pvalue +=
Ms[ty]l[O] * Ns[O]J[tx] +
Ms[eyl[1] * Ns[1][tx] +

Ms[ty][15] * Ns[15][tx]: // BLOCK SIZE = 16

- No more loop
- No loop count update
- No branch

« Constant indices — no address arithmetic
Instructions

129
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Automatically:
#pragma unroll BLOCK_ SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)
{
Pvalue += Ms[ty][k] * Ns[k][tx];
}

Disadvantages to unrolling?



