GPU Architecture in detail and Performance Optimization (Part II)

Bin ZHOU 2014/06

Outline

General guideline II

Optimization

CPU-GPU Interaction

Kepler in detail

GENERAL GUIDELINE II

Kernel Optimization Workflow

General Optimization Strategies: Measurement

- Find out the limiting factor in kernel performance
 - Memory bandwidth bound (memory optimization)
 - Instruction throughput bound (instruction optimization)
 - Latency bound (configuration optimization)
- Measure effective memory/instruction throughput

Memory Optimization

- If the code is memory-bound and effective memory throughput is much lower than the peak
- Purpose: access only data that are absolutely necessary
- Major techniques
 - Improve access pattern to reduce wasted transactions
 - Reduce redundant access: read-only cache, shared memory

Instruction Optimization

If you find out the code is instruction bound

- Compute-intensive algorithm can easily become memory-bound if not careful enough
- Typically, worry about instruction optimization after memory and execution configuration optimizations

Purpose: reduce instruction count

Use less instructions to get the same job done

Major techniques

- Use high throughput instructions (ex. wider load)
- Reduce wasted instructions: branch divergence, reduce replay (conflict), etc.

Latency Optimization

- When the code is latency bound
 - Both the memory and instruction throughputs are far from the peak
- Latency hiding: switching threads
 - A thread blocks when one of the operands isn't ready
- Purpose: have enough warps to hide latency
- Major techniques: increase active warps, increase ILP

CPU-GPU INTERACTION

Minimize CPU-GPU data transfer

- Host<->device data transfer has much lower bandwidth than global memory access.
 - 16 GB/s (PCIe x16 Gen3) vs 250 GB/s & 3.95 Tinst/s (GK110)
- Minimize transfer
 - Intermediate data can be allocated, operated, de-allocated directly on GPU
 - Sometimes it's even better to recompute on GPU
 - Move CPU codes to GPU that do not have performance gains if it can reduce data transfer
- Group transfer
 - One large transfer much better than many small ones
 - Overlap memory transfer with computation

Revisit GPU Processing Flow

Revisit GPU Processing Flow

Revisit GPU Processing Flow

CUDA

•
$$T_{total} = T_{HtoD} + T_{Exec} + T_{DtoH}$$

More Overlap?

CUDA

Stream 2

Stream Example

```
cudaStreamCreate(&stream1);

cudaMemcpyAsync(dst1, src1, size, cudaMemcpyHostToDevice, stream1);

kernel<<<grid, block, 0, stream1>>>(...);

cudaMemcpyAsync(dst1, src1, size, stream1);

cudaStreamSynchronize(stream1);
```

Stream Example

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, cudaMemcpyHostToDevice, stream1);
cudaMemcpyAsync(dst2, src2, size, cudaMemcpyHostToDevice, stream2);
kernel<<<grid, block, 0, stream1>>>(...);
kernel<<<grid, block, 0, stream2>>>(...);
cudaMemcpyAsync(dst1, src1, size, cudaMemcpyDeviceToHost, stream1);
cudaMemcpyAsync(dst2, src2, size, cudaMemcpyDeviceToHost, stream2);
cudaStreamSynchronize(stream1);
cudaStreamSynchronize(stream2);
```

KEPLER IN DETAIL

Kepler

NVIDIA Kepler

- 1.31 tflops double precision
- 3.95 tflops single precision
- 250 gb/sec memory bandwidth
- 2,688 Functional Units (cores)
- ~= #1 on Top500 in 1997

Kepler GK110 SMX vs Fermi SM

3x perf Power goes down!

New ISA Encoding: 255 Registers per Thread

- Fermi limit: 63 registers per thread
 - A common Fermi performance limiter
 - Leads to excessive spilling
- Kepler: Up to 255 registers per thread
 - Especially helpful for FP64 apps

Hyper-Q

 Feature of Kepler K20 GPUs to increase application throughput by enabling work to be scheduled onto the GPU in parallel

- Two ways to take advantage
 - CUDA Streams now they really are concurrent
 - CUDA Proxy for MPI concurrent CUDA MPI processes on one GPU

Fermi

Fermi Concurrency

Fermi allows 16-way concurrency

- Up to 16 grids can run at once
- But CUDA streams multiplex into a single queue
- Overlap only at stream edges

Kepler Improved Concurrency

Kepler allows 32-way concurrency

- One work queue per stream
- Concurrency at full-stream level
- No inter-stream dependencies

CPU Processes

CPU Processes

CPU Processes

CPU Processes

CPU Processes

Hyper-Q: Simultaneous Multiprocess

Without Hyper-Q

With Hyper-Q

What is Dynamic Parallelism?

The ability to launch new kernels from the GPU

- Dynamically based on run-time data
- Simultaneously from multiple threads at once
- Independently each thread can launch a different grid

Fermi: Only CPU can generate GPU work

Kepler: GPU can generate work for itself

What Does It Mean?

GPU as Co-Processor

Autonomous, Dynamic Parallelism

New Types of Algorithms

- Recursive Parallel Algorithms like Quick sort
- Adaptive Mesh Algorithms like Mandelbrot

Familiar Programming Model

```
int main() {
                                                        CPU
    float *data;
    setup(data);
    A <<< ... >>> (data);
    B <<< ... >>> (data);
    C <<< ... >>> (data);
    cudaDevi ceSynchroni ze();
    return 0;
__global__ void B(float *data) {
                                                          В
    do_stuff(data);
    X <<< ... >>> (data);
    do_more_stuff(data);
```

Launch is per-thread and asynchronous

Code Example launch<<< 128, 256 >>>(buf); cudaDevi ceSynchroni ze(); __syncthreads(); cudaMemcpyAsync(data, buf, 1024); cudaDevi ceSynchroni ze();

- Launch is per-thread and asynchronous
- CUDA primitives are per-block
- launched kernels and CUDA objects like streams are visible to all threads in a thread block
- cannot be passed to child kernel

Code Example

```
launch<<< 128, 256 >>>(buf);
    cudaDevi ceSynchroni ze();
__syncthreads();
cudaMemcpyAsync(data, buf, 1024);
cudaDevi ceSynchroni ze();
```

- Launch is per-thread and asynchronous
- CUDA primitives are per-block
- Sync includes all launches by any thread in the block

Code Example launch <<< 120, 256 >>> (buf);cudaDevi ceSynchroni ze(); __syncthreads(); cudaMemcpyAsync(data, buf, 1024);

cudaDevi ceSynchroni ze();

- Launch is per-thread and asynchronous
- CUDA primitives are per-block
- Sync includes all launches by any thread in the block
- cudaDeviceSynchronize() does not imply syncthreads()

Code Example

```
launch<<< 128, 256 >>>(buf);
    cudaDevi ceSynchroni ze();
__syncthreads();
cudaMemcpyAsync(data, buf, 1024);
cudaDevi ceSynchroni ze();
```

Memory Model

Launch implies membar
 (child sees parent state at time of launch)

```
Code Example
   launch<<< 128, 256 >>>(buf);
    cudaDevi ceSynchroni ze();
__syncthreads();
cudaMemcpyAsync(data, buf, 1024);
cudaDevi ceSynchroni ze();
```

Memory Model

- Launch implies membar
 (child sees parent state at time of launch)
- Sync implies invalidate
 (parent sees child writes after sync)

```
Code Example
    launch<<< 128, 256 >>>(buf);
   cudaDevi ceSynchroni ze();
__syncthreads();
cudaMemcpyAsync(data, buf, 1024);
cudaDevi ceSynchroni ze();
```

Memory Model

- Launch implies membar
 (child sees parent state at time of launch)
- Sync implies invalidate
 (parent sees child writes after sync)
- Local & shared memory are private
- Constants are immutable

__device__ float buf[1024]; __global__ void cnp(float *data) { int tid = threadldx.x; if(tid % 2) buf[tid/2] = data[tid]+data[tid+1]; __syncthreads(); if(tid == 0) { launch<<< 128, 256 >>>(buf); cudaDeviceSynchronize(); } __syncthreads(); if (tid == 0) {

cudaMemcpyAsync(data, buf, 1024);

cudaDevi ceSynchroni ze();

Dynamic Parallelism and GPU Callable Libraries

```
// All threads generate data
// Only one thread calls library
// All threads wait for dtrsm
__syncthreads();
// Now continue
consumeData(c);
```


NVIDIA GPUDirect™ RDMA

- Provides technology necessary to enable lower latency memory transfers between GPU and other PCIE devices without requiring custom hardware.
- API and documentation for device driver developers
- Available on Linux only
- Supported on Kepler Quadro and Telsa GPUs

NVIDIA GPUDirect™ Now Supports RDMA

More threads are needed

- 2-3x throughput per clock per SM
- Memory bandwidth increasing
- Bigger SM have bigger stomach!

More thread are needed

- If you already launched enough threads, the following enhancement on kepler will ensure enough active warps on SMs.
- 2x register file on each SM
 - E.g. 63 registers per thread, blockDim 256
 - In Fermi 16 active warps
 - In Kepler 32 active warps
- 2x simultaneous blocks per SM
 - E.g. 16 registers per thread, blockDim 96
 - In Fermi 96*8/32 = 24 active warps
 - In kepler 96*16/32 = 46 active warps
- More flexible for shared memory configuration 16/32/48KB

If one kernel can't launch enough threads

Concurrent Kernels

– GK110 allows up to 32 concurrent kernels to execute.

Hyper-Q

- Using MPI, Different processes can use the device at the same time.
- Using Stream, there's no inter-stream dependencies any more.

• Dynamic Parallelism

Threads can launch kernels

Two GPUs on K10

- K10 is a dual-GK104 Gemini board.
- Appear as two separate CUDA devices.
- Need multi-GPU paradigm.

New instructions for replacement

- Communication in Shared memory -> shuffle
 - Don't need Shared memory
 - Lower latency
- Complex reduction -> Fast Global Memory Atomics
 - More easy way
- L1 cache read -> Read-Only Data Cache
 - L1 is reserved only for register spills and stack data
 - A separate pipe, relaxed memory coalescing rules

SUMMARY

APOD: A Systematic Path to Performance

Tools For Project

- Linux SSH client
 - Putty
- cuda-gdb
 - Along with GPU
- Profiler
 - Visual Profiler

cuda-gdb

- 编译程序时,使用 -g -G选项; Linux下停止 x-server,启动命令行
 - 常用的调试命令列表
 - breakpoint (b):设置断点,使代码在指定位置暂停执行。其参数可以是方法名,也可以是行号。
 - run(r):在调试器内执行程序。
 - next(n):单步执行到下一行代码。
 - continue(c):继续执行已暂停的程序至下一个断点或程序结尾处。
 - backtrace (bt):显示当前方法调用的栈中的内容。
 - thread:列出当前的主机线程。
 - cuda thread:列出当前活跃的GPU线程(若有的话)。
 - cuda kernel:列出当前活跃的GPU Kernel,并允许将"焦点"转移到指定的GPU线程。