GPU Architecture in detail and Performance
Optimization (Part Il)

Bin ZHOU 2014/06

Outline

 General guideline Il

Optimization e CPU-GPU Interaction

o Kepler in detail

GENERAL GUIDELINE Il

Kernel Optimization Workflow

Instruction

Instruction
optimization optimization

Configuration

optimization

General Optimization Strategies: Measurement

* Find out the limiting factor in kernel performance
— Memory bandwidth bound (memory optimization)
— Instruction throughput bound (instruction optimization)
— Latency bound (configuration optimization)

 Measure effective memory/instruction throughput

Memory Optimization

e |f the code is memory-bound and effective memory
throughput is much lower than the peak

 Purpose: access only data that are absolutely
necessary

 Major techniques
— Improve access pattern to reduce wasted transactions
— Reduce redundant access: read-only cache, shared memory

Instruction Optimization

e If you find out the code is instruction bound

— Compute-intensive algorithm can easily become memory-bound if not careful
enough

— Typically, worry about instruction optimization after memory and execution
configuration optimizations

e Purpose: reduce instruction count
— Use less instructions to get the same job done

 Major techniques
— Use high throughput instructions (ex. wider load)
— Reduce wasted instructions: branch divergence, reduce replay (conflict), etc.

Latency Optimization

When the code is latency bound

— Both the memory and instruction throughputs are far from the
peak

Latency hiding: switching threads
— A thread blocks when one of the operands isn’t ready

Purpose: have enough warps to hide latency

Major techniques: increase active warps, increase ILP

CPU-GPU INTERACTION

Minimize CPU-GPU data transfer

v Host<->device data transfer has much lower bandwidth than global
memory access.

v 16 GB/s (PCle x16 Gen3) vs 250 GB/s & 3.95 Tinst/s (GK110)

< Minimize transfer
v Intermediate data can be allocated, operated, de-allocated directly on GPU
@ Sometimes it’s even better to recompute on GPU

@ Move CPU codes to GPU that do not have performance gains if it can reduce
data transfer

< Group transfer
< One large transfer much better than many small ones
< Overlap memory transfer with computation

Revisit GPU Processing Flow

1. Copy input data from CPU memory to GPU
memory

Revisit GPU Processing Flow

CPU Memory

1. Copy input data from CPU memory to GPU
memory
2. Load GPU code and execute it

Revisit GPU Processing Flow

1. Copy input data from CPU memory to GPU
memory

2. Load GPU code and execute it

3. Copy results from GPU memory to CPU
memory

CUDA

* Ttotat = Thtop T Texec + Tpton

* More Overlap?

CUDA

HtoD Exec DtoH

Stream 1 HD1 HD2 El E2 DH1

Stream 2

Stream Example

cudaStreamCreate(&streaml);

cudaMemcpyAsync(dstl, srcl, size, cudaMemcpyHostToDevice, streaml);
kernel<<<grid, block, 0, streaml>>>(.);

cudaMemcpyAsync(dstl, srcl, size, streaml); ::>

cudaStreamSynchronize(streaml);

Stream Example

cudaStreamCreate(&streaml);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dstl, srcl, size, cudaMemcpyHostToDevice, streaml);
. cudaMemcpyAsync(dst2, src2, size, cudaMemcpyHostToDevice,stream2);
: kernel<<<grid, block, 0, stream1>>>(.):

: kernel<<<grid, block, 0, stream2>>>(..); :
EcudaMemcpyAsync(dstl, srcl, size, cudaMemcpyDeviceToHost, streaml);?
cudaMemcpyAsync(dst2, src2, size, cudaMemcpyDeviceToHost, stream2);

cudaStreamSynchronize(streaml);

cudaStreamSynchronize(stream2);

KEPLER IN DETAIL

Kepler

=

NVIDIA Kepler
— 1.31 tflops double precision

s DT .
==

— 3.95 tflops single precision

A
]
9
g

— 250 gb/sec memory
bandwidth

— 2,688 Functional Units
(cores)

~= #1 on Top500 in 1997

R RGN | 3) S| Pt g (N i 5 58 | Il

NVIDIA GK110 - Kepler

Kepler GK110 SMX vs Fermi SM

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

atch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit tch Unit Dispatch Unit Dispatch Unit
L 4 + &+ L &+ &+ -+

Register File (65,536 x 32-bif)

s
e
e
L

- -

+
*
-
*
*
*
-

E S & k= 4 4
LDisT SFU |Cora| Cora| Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

o
g
C

Core Core Core LDIST

LDIST Core Core Core

o
]
@

Core Core Core

Cora Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core LDisT

o
g
C

Core Core Core LDIST

o
]
a

Core Core Core LDisT

LOsT

-

3x perf
Power goes down! —

Tex Tex

64 KB Shared Memory [L1 Cache

Tex Tex

New ISA Encoding: 255 Registers per Thread

 Fermi limit: 63 registers per thread
— A common Fermi performance limiter

— Leads to excessive spilling

 Kepler : Up to 255 registers per thread
— Especially helpful for FP64 apps

Hyper-Q

 Feature of Kepler K20 GPUs to increase
application throughput by enabling work to
be scheduled onto the GPU in parallel

 Two ways to take advantage
— CUDA Streams — now they really are concurrent

— CUDA Proxy for MPI — concurrent CUDA MPI
processes on one GPU

Better Concurrenc‘ - ' \

Kepler GK110

Fermi Concurrency

/ A< 5 B>>> 0<>>>
<

Stream 1

Stream 2
Hardware Work Queue
X<LKL>>> YKKL>>> 5 7<<<>>>

Stream 3

Fermi allows 16-way concurrency

— Up to 16 grids can run at once
— But CUDA streams multiplex into a single queue
— Overlap only at stream edges

Kepler Improved Concurrency

A <<<>>>B <<<>>> 0<<<>>>

Stream 1

P<<<>>> ; Q<<<>>> 5 Re<<>>>

Stream 2

X <<<>>>0Y <<<>>>5 7<<<>>>

Multiple Hardware Work Queues

Stream 3

Kepler allows 32-way concurrency
One work queue per stream
Concurrency at full-stream level
No inter-stream dependencies

Fermi: Time-Division Multiprocess

Y Y)

A B C D

CPU Processes

Shared GPU

Fermi: Time-Division Multiprocess

S R N N

A B C D
PR N N
CPU Processes I
Shared GPU M\“"'*«..‘,ﬁ_

Fermi: Time-Division Multiprocess

N N Y Y

A B C D
N N — —_
CPU Processes "
Shared GPU %'""-H_ﬁ

Fermi: Time-Division Multiprocess

N N Ny Y

CPU Processes

e e e e e e

Shared GPU

Fermi: Time-Division Multiprocess

N N N N

CPU Processes

e e e e e e

Shared GPU

Fermi: Time-Division Multiprocess

N N Y Y

A B C D

NS U7 R

CPU Processes o

Shared GPU i
» 4

Fermi: Time-Division Multiprocess

N N Y Y

CPU Processes
Shared GPU o

Hyper-Q: Simultaneous Multiprocess

)

—

CPU Processes

Shared GPU

O)

— /N
~ CUDA Proxy |
Client — Server Software System
e, 7 e
" » -

Without Hyper-Q

With Hyper-Q

What is Dynamic Parallelism?

The ability to launch new kernels from the GPU
— Dynamically - based on run-time data
— Simultaneously - from multiple threads at once
— Independently - each thread can launch a different grid

Y

| Yy
™ - witie

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

What Does It Mean?

CPU GPU CPU GPU

4..-.....-._....-.-....... -/ I

.......................... . v

e EEee Wl O A0
.......-....-.........._..,. ‘r’#'. ‘.‘.‘.5‘" v i
I e
S—

GPU as Co-Processor Autonomous, Dynamic Parallelism

New Types of Algorithms

* Recursive Parallel Algorithms like Quick sort
 Adaptive Mesh Algorithms like Mandelbrot

Computational Power

allocated to regions of

interest

-8

m
11
T "r,.,_.,_.
T ' T L
EEEE = ==
MR i]
N
| H T
__‘ i':__
11
111

CUDA Today CUDA on Kepler

Familiar Programming Model

int main() {
float *data;
setup(data);

A <<< ... >>> (data);
B <<< ... >>> (data);

__global___ void B(float *data)

{
do_stuff(data);

~ Launch is per-thread
and asynchronous

Programming Model

e Code Example

__syncthreads

f(tid == 0) {
aunch<<< 128, 256 >>>(buf);
cudaDeVvICESY rontze() ;

by
__syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudabDeviceSynchronize();

Programming Model

Launch is per-thread
and asynchronous

CUDA primitives are per-block

launched kernels and CUDA objects like
streams are visible to all threads in a
thread block

cannot be passed to child kernel

-

Code Example

__syncthreads();

i1f(tid == 0) {
launch<<< 128, 256 >>>(buf);
cudaDeviceSynchronize();

by
__syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudaDeviceSynchronize();

Programming Model

Code Example
~ Launch is per-thread 4 P B

and asynchronous

~ CUDA primitives are per-block

~ Sync includes all launches
by any thread in the block

__syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudabDeviceSynchronize();

Programming Model

Launch is per-thread
and asynchronous

CUDA primitives are per-block

Sync includes all launches
by any thread in the block

cudaDeviceSynchronize() does not
imply syncthreads()

-

Code Example

iIf(tid == 0) {
launch<<< 128, 256 >>>(buf);
cudaDeviceSynchronize();

+
syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudaDeviceSynchronize();

Memory Model

o s Code Example ™
< Launch implies membar

(child sees parent state at time of launch)

__syncthreads

f(tid == 0) {
aunch<<< 128, 256 >>>(buf);
cudabDevi rontze() ;

by
__syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudabDeviceSynchronize();

Memory Model

o e Code Example ™
< Launch implies membar
(child sees parent state at time of launch)
~ Sync implies invalidate
(parent sees child writes after sync)

__syncthreads();

if(tid == 0) {

__syncthreads();

cudaMemcpyAsync(data, buf, 1024);
cudabDeviceSynchronize();

Memory Model

Launch implies membar
(child sees parent state at time of launch)

Sync implies invalidate
(parent sees child writes after sync)

Local & shared memory are
private

Constants are immutable

e

Code Example

__syncthreads();

if(tid == 0) {
launch<<< 128, 256 >>>(buf);
cudaDeviceSynchronize();
by
__syncthreads();
it (tid == 0) {
cudaMemcpyAsync(data, buf, 1024);
cudabDeviceSynchronize();

Dynamic Parallelism and GPU Callable
Libraries

~

CPU launches
kernel

// All threads generate data

generation

// Only one thread calls library

if(threadldx.x == 0) {
cublasDgemm(a, b, c);
cudaDeviceSynchronize();

(1

¥ .
e w

consumeData(c);

|

NVIDIA GPUDirect™ RDMA

Provides technology necessary to enable lower
atency memory transfers between GPU and other
PCIE devices without requiring custom hardware.

APl and documentation for device driver developers
Available on Linux only

Supported on Kepler Quadro and Telsa GPUs

NVIDIA GPUDirect™ Now Supports RDMA

Network Network
Card Card

More threads are needed

e 2-3x throughput per clock per SM
e Memory bandwidth increasing

e Bigger SM have bigger smach!

Eo o e

ey el G corn [S e oo [
:—:—:—----«:—:—:—-:—:—:—- sear
o e o [v B o e [e e o
c-r.—:--...'-v :-c-:—_(-c—:—- et
o oo eom [0 e B o o -r—:—h-—w
oy com go con [N co o coo [
- .

B o Guen
e

Comn G Enem
= ==
Comn o e
Comn o S

[

wu
-
-y
-

-~
o
=
ooy
pre=
=
o
i
-
=
=
s

G Cons Corw

Comn Cww Guew

|
bl
i
il
i .!
&
ik
i I

- = =

[o o

ol Enl o (o G

[

Eam Eare

lpsppeeneneEEE e

AR NIRRERRARRAREER |

More thread are needed

If you already launched enough threads, the following
enhancement on kepler will ensure enough active warps on SMs.
2x register file on each SM

— E.g. 63 registers per thread, blockDim 256

— In Fermi 16 active warps

— In Kepler 32 active warps
2x simultaneous blocks per SM

— E.g. 16 registers per thread, blockDim 96

— In Fermi 96*8/32 = 24 active warps

— In kepler 96*16/32 = 46 active warps

More flexible for shared memory configuration 16/32/48KB

If one kernel can’t launch enough threads

* Concurrent Kernels
— GK110 allows up to 32 concurrent kernels to execute.
* Hyper-Q

— Using MPI, Different processes can use the device at the
same time.

— Using Stream, there’s no inter-stream dependencies any more.

e Dynamic Parallelism

— Threads can launch kernels

Two GPUs on K10

e K10 is a dual-GK104 Gemini board.
 Appear as two separate CUDA devices.
* Need multi-GPU paradigm.

New instructions for replacement

e Communication in Shared memory -> shuffle
— Don’t need Shared memory
— Lower latency

e Complex reduction -> Fast Global Memory Atomics
— More easy way

e L1 cache read -> Read-Only Data Cache
— L1 is reserved only for register spills and stack data
— A separate pipe, relaxed memory coalescing rules

SUMMARY

APOD: A Systematic Path to Performance

yad ™\
\/

Tools For Project

e Linux SSH client
— Putty

e cuda-gdb
— Along with GPU

e Profiler
— Visual Profiler

. Ui

W H B 25K

R, 8 -g -GIEIT ;

cuda-gdb

Linux F &1L x-server,)B 315 21T

breakpoint (b) : WEWm, FRBEEREMEZERIT. HSE0
LR %, WAl ITS
run (r) : EEAZEHN AT
next (n) : HIPPATRI T —1T74CH,

continue (¢) : HEHITEOHIEHIT

o

2T o

SR T — M AR R AL

£

backtrace (bt) : E/xHHIAFEE IR R NS

= HL2R7

thread: %I/ X873

cuda thread: % H HBITEER I GPUL]

.

E CAAN .

cuda kernel: % H 4 EITERRFIGPU Kernel, FFRG¥ “E 57 %338
=

EFIGPULTE

