
Simple NN with CUDA/GPU

Bi ZHOU @ USTCBin ZHOU @ USTC

Jan.2015

Very Simple digit recognitionVery Simple digit recognition

• 3 layers: Simple BP network

– 1 Input Layer, 1 hidden layer, 1 output layer

• Several Neurons

– 784（ 28*28） input, 100 hidden, 10 output

• Some configuration

– Activation Function: Sigmoid function

You’ve already known this very wellYou ve already known this very well

10 Digits to Recognize10 Digits to Recognize

d l• Training and testing samples are from

• MNIST ，http://yann.lecun.com/exdb/mnist/

• Every pic is 28*28

• Totally 10000 pics

• We use 600 of each as training set and 200 asWe use 600 of each as training set and 200 as
test set.

Whole ProcessI t &

Classificatio
nWhole ProcessInput &

feature
extraction??

Supervised
T i iTraining

• Raw Data?

• BP with a
lot of

dRaw Data?
• PCA for

Images
• GPU??

rounds
• Very Time

Consuming!
• Saved

network • GPU?? • GPU ?? for future
usage

• GPU??

Training Process: GPU AcceleratedTraining Process: GPU Accelerated

 Which Part?

 linear Algebra inside single iteration/Sample

 But not between iterations/Samples/ p

 Dependency between iterations/Samples

Single Step ComputationSingle Step Computation

InitializeInitialize

F E h T T l XFor Each Training Tuple Xi

1n




In Hidden Layer::GPU)(
0

j
i

iijj xwfy  




Repeat to end

Algorithm ViewAlgorithm View

GPU ImplementationGPU Implementation

 Initialize the network on GPU

 Hidden Layer Nodes, Weight and Bias

 Output Layer Nodes, Weight and Bias

 Input dataset

 Prepare the data to GPU

 Pack the batched images in CPU and then

 Remember to do it all at once

 Then start the training for each sample

Parallelization StrategyParallelization Strategy

 Each thread is in charge of computing one
output of the neuron

 Not limited by the thread number within a block

 Back propagation is also the same

 Very careful about the Memory Access Pattern!y y

Close look at the codeClose look at the code
for(i=0;i<N0N;i++)

[] []node0[i].Output=pic[i];

for(j=0;j<N1N;j++) j is independent which can be for(j=0;j<N1N;j++)

{

node1[j].Input=node1[j].bias;

j is independent, which can be
processed parallel

ode [j]. put ode [j].b as;

for(i=0;i<N0N;i++)

{

node1[j].Input+=w01[i][j]*node0[i].Output;

}

[] /(([]))node1[j].Output=1.0/(1.0+exp(-node1[j].Input));

}

GPU ParallelizationGPU Parallelization
Simple!

Layer 2 Every thread in
charge of 1 neuron

Layer 1 Every thread in
charge of 1 neuron

Close look at CUDA/GPU codeClose look at CUDA/GPU code
__global__ void kL0toL1(float *input, float *output, float *w, float *b)

{{

int nodeNum = threadIdx.x;

int i = 0;
Every thread in charge of 1

float aTmp=0;

if (nodeNum < N1N)

{

Every thread in charge of 1
neuron

aTmp=b[nodeNum];

for (i = 0; i< N0N; i++)

aTmp += *(w+i*100+nodeNum)*input[i];aTmp += *(w+i*100+nodeNum)*input[i];

output[nodeNum] = 1.0/(1.0+exp(-aTmp));

}

}

Performance ConsiderationPerformance Consideration

 Memory Limited ? Instruction Limited?

 Memory Access Pattern?

 Every thread will access w01[][] in a continuous
way; Not so good.

Training Perf i5 2.0G CPU 1 core Kepler GPU 1 SM

1 image 57ms 1ms

How to get a Better Solution?How to get a Better Solution?

 Memory Access Pattern is the first thing to
deal with

 Put W01 into shared memory is a simple try

 Redesign the Memory Storage structure

 Or redesign the Algorithm to avoid the F g g
function

More Detailed Analysis

Performance is bounded by both Arithmetic

More Detailed Analysis

Performance is bounded by both Arithmetic
and Memory latency. Too bad.
We have only 1 block, far away from filling the
SMSM.

Kernel LatencyKernel Latency

 Grid Size is too small to hide the latency

Register AnalysisRegister Analysis

Kernel MemoryKernel Memory

TargetTarget

