
Simple NN with CUDA/GPU

Bi ZHOU @ USTCBin ZHOU @ USTC

Jan.2015

Very Simple digit recognitionVery Simple digit recognition

• 3 layers: Simple BP network

– 1 Input Layer, 1 hidden layer, 1 output layer

• Several Neurons

– 784（ 28*28） input, 100 hidden, 10 output

• Some configuration

– Activation Function: Sigmoid function

You’ve already known this very wellYou ve already known this very well

10 Digits to Recognize10 Digits to Recognize

d l• Training and testing samples are from

• MNIST ，http://yann.lecun.com/exdb/mnist/

• Every pic is 28*28

• Totally 10000 pics

• We use 600 of each as training set and 200 asWe use 600 of each as training set and 200 as
test set.

Whole ProcessI t &

Classificatio
nWhole ProcessInput &

feature
extraction??

Supervised
T i iTraining

• Raw Data?

• BP with a
lot of

dRaw Data?
• PCA for

Images
• GPU??

rounds
• Very Time

Consuming!
• Saved

network • GPU?? • GPU ?? for future
usage

• GPU??

Training Process: GPU AcceleratedTraining Process: GPU Accelerated

 Which Part?

 linear Algebra inside single iteration/Sample

 But not between iterations/Samples/ p

 Dependency between iterations/Samples

Single Step ComputationSingle Step Computation

InitializeInitialize

F E h T T l XFor Each Training Tuple Xi

1n

In Hidden Layer::GPU)(
0

j
i

iijj xwfy

Repeat to end

Algorithm ViewAlgorithm View

GPU ImplementationGPU Implementation

 Initialize the network on GPU

 Hidden Layer Nodes, Weight and Bias

 Output Layer Nodes, Weight and Bias

 Input dataset

 Prepare the data to GPU

 Pack the batched images in CPU and then

 Remember to do it all at once

 Then start the training for each sample

Parallelization StrategyParallelization Strategy

 Each thread is in charge of computing one
output of the neuron

 Not limited by the thread number within a block

 Back propagation is also the same

 Very careful about the Memory Access Pattern!y y

Close look at the codeClose look at the code
for(i=0;i<N0N;i++)

[] []node0[i].Output=pic[i];

for(j=0;j<N1N;j++) j is independent which can be for(j=0;j<N1N;j++)

{

node1[j].Input=node1[j].bias;

j is independent, which can be
processed parallel

ode [j]. put ode [j].b as;

for(i=0;i<N0N;i++)

{

node1[j].Input+=w01[i][j]*node0[i].Output;

}

[] /(([]))node1[j].Output=1.0/(1.0+exp(-node1[j].Input));

}

GPU ParallelizationGPU Parallelization
Simple!

Layer 2 Every thread in
charge of 1 neuron

Layer 1 Every thread in
charge of 1 neuron

Close look at CUDA/GPU codeClose look at CUDA/GPU code
__global__ void kL0toL1(float *input, float *output, float *w, float *b)

{{

int nodeNum = threadIdx.x;

int i = 0;
Every thread in charge of 1

float aTmp=0;

if (nodeNum < N1N)

{

Every thread in charge of 1
neuron

aTmp=b[nodeNum];

for (i = 0; i< N0N; i++)

aTmp += *(w+i*100+nodeNum)*input[i];aTmp += *(w+i*100+nodeNum)*input[i];

output[nodeNum] = 1.0/(1.0+exp(-aTmp));

}

}

Performance ConsiderationPerformance Consideration

 Memory Limited ? Instruction Limited?

 Memory Access Pattern?

 Every thread will access w01[][] in a continuous
way; Not so good.

Training Perf i5 2.0G CPU 1 core Kepler GPU 1 SM

1 image 57ms 1ms

How to get a Better Solution?How to get a Better Solution?

 Memory Access Pattern is the first thing to
deal with

 Put W01 into shared memory is a simple try

 Redesign the Memory Storage structure

 Or redesign the Algorithm to avoid the F g g
function

More Detailed Analysis

Performance is bounded by both Arithmetic

More Detailed Analysis

Performance is bounded by both Arithmetic
and Memory latency. Too bad.
We have only 1 block, far away from filling the
SMSM.

Kernel LatencyKernel Latency

 Grid Size is too small to hide the latency

Register AnalysisRegister Analysis

Kernel MemoryKernel Memory

TargetTarget

