CNN & cuDNN

Bin ZHOU USTC Jan. 2015

Acknowledgement

- Reference:
- Introducing NVIDIA® cuDNN, Sharan Chetlur, Software Engineer,
- CUDA Libraries and Algorithms Group
- > 深度卷积神经网络CNNs的多GPU并行框架 及其在图像 识别的应用 -- http://data.gq.com/article?id=1516

CNN

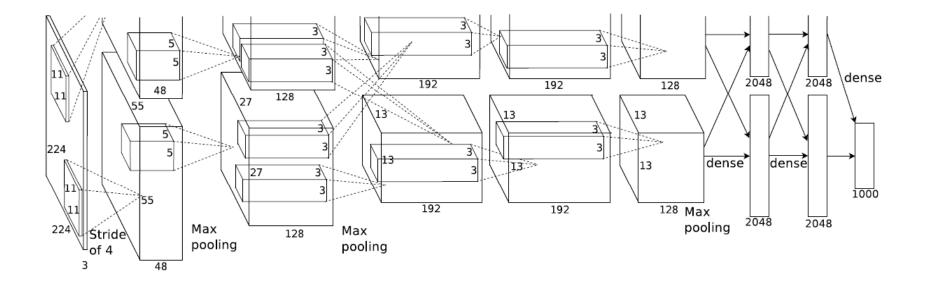
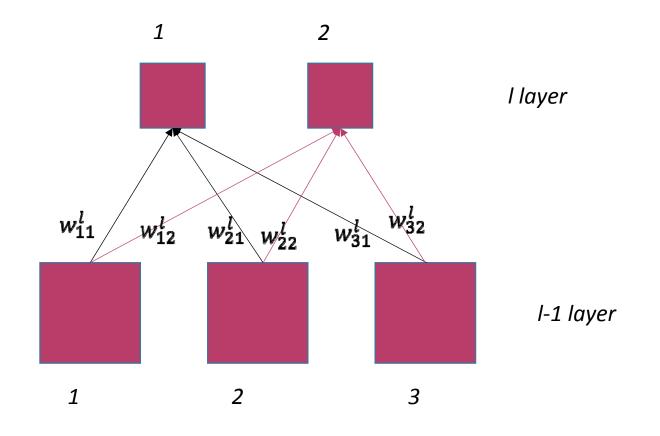


Figure1. ImageNet CNN Model

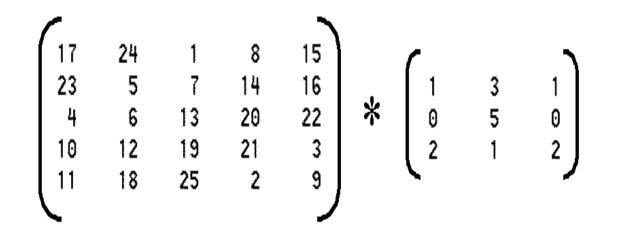
Recall BP Network



BP Brief Review

- Cost(Loss) Function To Evaluate the output of the network
- Common Cost Function
 - MSE (Mean Squared Error)
 - Cross Function

2D Convolution



full		same		valid			
	17	75	90	35	40	53	15
	23	159	165	45	105	137	16
	38	198	120	165	205	197	52
	56	95	160	200	245	184	35
	19	117	190	255	235	106	53
	20	89	160	210	75	90	6
	22	47	90	65	70	13	18

CNN Brief

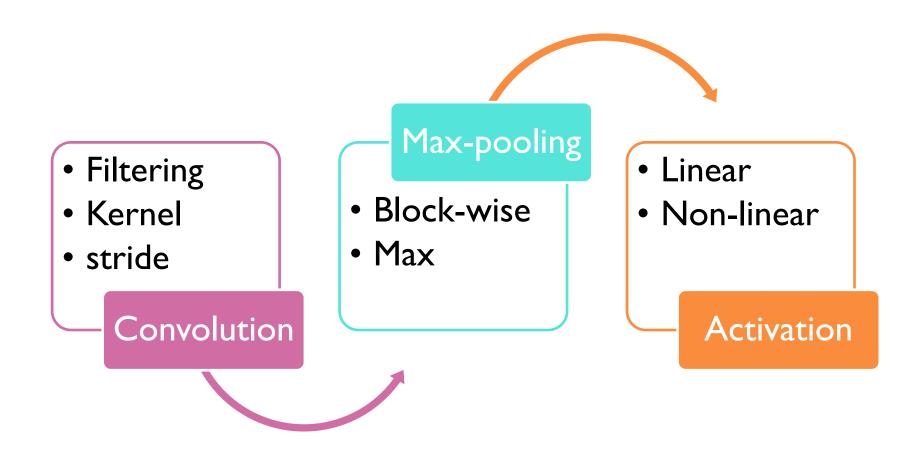
- > Interpret AI task as the evaluation of complex
 function
 - ▹ Facial Recognition: Map a bunch of pixels to a name
 - > Handwriting Recognition: Image to a character
- > Neural Network: Network of interconnected
 simple
 - "neurons"
- \succ Neuron typically made up of 2 stages:
 - > Linear Transformation of data
 - > Point-wise application of non-linear function
- > In a CNN, Linear Transformation is a convolution

cuDNN

implementations of routines ≻Convolution ➢Pooling ≽softmax ≻neuron activations, including: Sigmoid Rectified linear (ReLU)

Hyperbolic tangent (TANH)

CNNs: Stacked Repeating Triplets



Applications ?

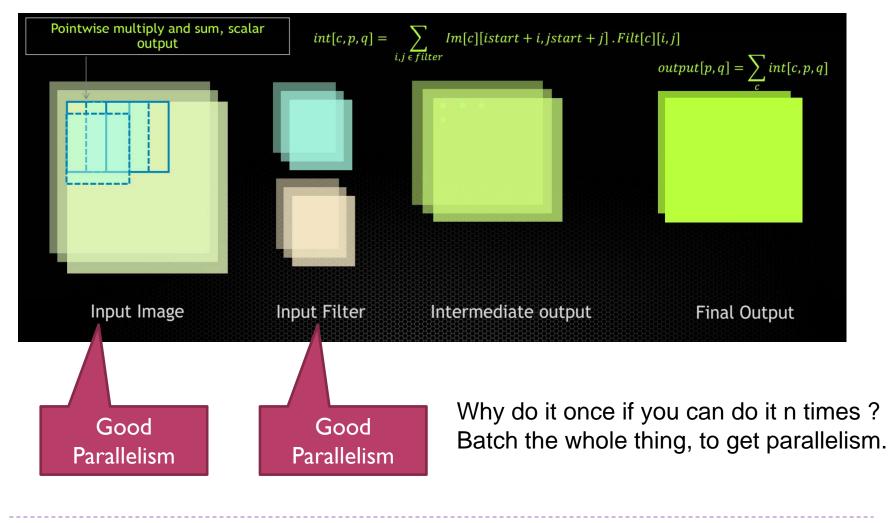
- ▶ Anyone Enlighten me?
- ▶ You can bring more brilliant applications

Multi-convolve overview

 \succ Linear Transformation part of the CNN neuron

- > Main computational workload
- > 80-90% of execution time
- > Generalization of the 2D convolution (a 4D tensor convolution)
- \succ Very compute intensive, therefore good for GPUs
- > However, not easy to implement efficiently

Multi-convolve, pictorially



2015/1/25

cuDNN-GPU accelerated CNN lib

- Low-level Library of GPU-accelerated routines; similar
 - in intent to BLAS
- > Out-of-the-box speedup of Neural Networks
- Developed and maintained by NVIDIA
- Optimized for current and future NVIDIA GPU generations
- First release focused on Convolutional Neural Networks

cuDNN Features

- Flexible API : arbitrary dimension ordering, striding, and sub-regions for 4d tensors
- Less memory, more performance : Efficient forward and backward convolution routines with zero memory overhead
- Easy Integration : black box implementation of convolution and other routines - ReLu, Sigmoid, Tanh,
 - Pooling, Softmax

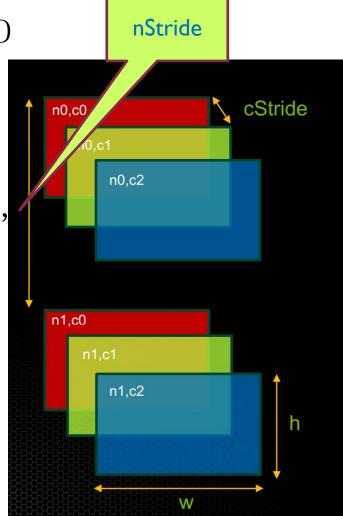
Tensor-4d: Important

- Image Batches described as 4D Tensor
 - [n, c, h, w] with stride
 support

[nStride, cStride, hStride, wStride]

- Allows flexible data layout
- Easy access to subsets of features (
 - Caffe's "groups")
- Implicit cropping of subimages

> Plan to handle negative



2015/1/25

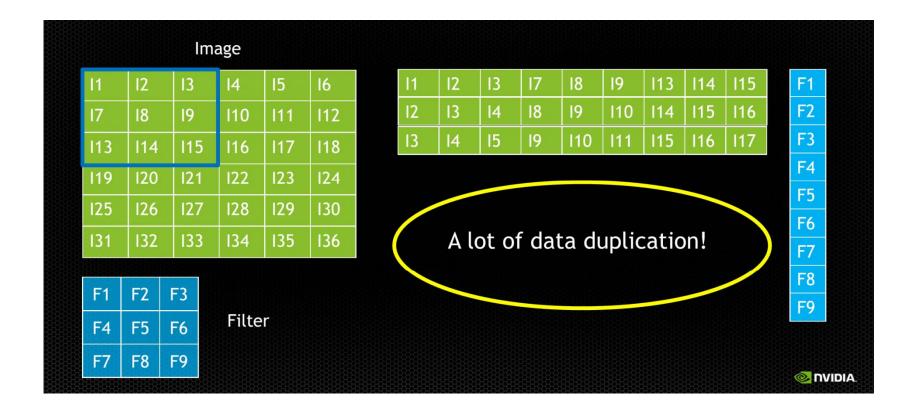
Example - OverFeat Layer 1

```
/* Allocate memory for Filter and ImageBatch, fill with data */
cudaMalloc( &ImageInBatch , ... );
cudaMalloc( &Filter , ... );
. . .
/* Set descriptors */
cudnnSetTensor4dDescriptor( InputDesc, CUDNN_TENSOR_NCHW, 128, 96, 221, 221);
cudnnSetFilterDescriptor( FilterDesc, 256, 96, 7, 7 );
cudnnSetConvolutionDescriptor( convDesc, InputDesc, FilterDesc,
    pad x, pad y, 2, 2, 1, 1, CUDNN CONVOLUTION);
/* query output layout */
cudnnGetOutputTensor4dDim(convDesc, CUDNN CONVOLUTION FWD, &n out, &c out, &h out, &w out);
/* Set and allocate output tensor descriptor */
cudnnSetTensor4dDescriptor( &OutputDesc, CUDNN TENSOR NCHW, n out, c out, h out, w out);
cudaMalloc(&ImageBatchOut, n out * c out * h out * w out * sizeof(float));
/* launch convolution on GPU */
cudnnConvolutionForward( handle, InputDesc, ImageInBatch, FilterDesc, Filter, convDesc,
                                                                                      OutputDesc, ImageBatchOut, CUDNN RESULT NO ACCUMULATE);
```

Real Code that runs

- ▶ Under Linux
- ▶ Demostration

Implementation 1: 2D conv as a GEMV

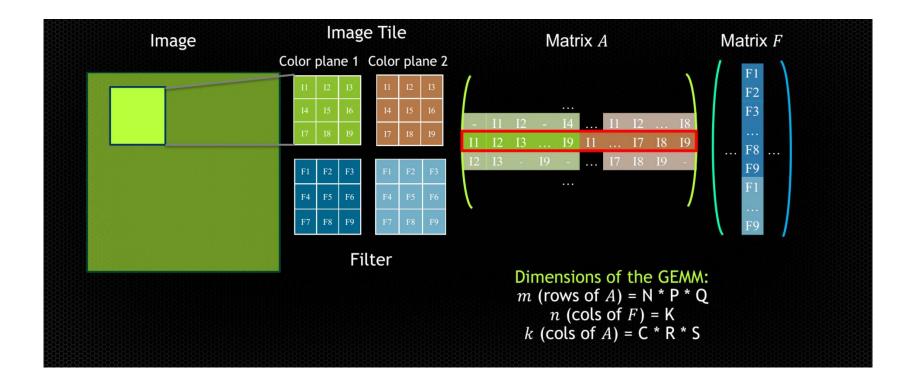


Multi-convolve

More of the same, just a little different Longer dot products More filter kernels Batch of images, not just one Mathematically:

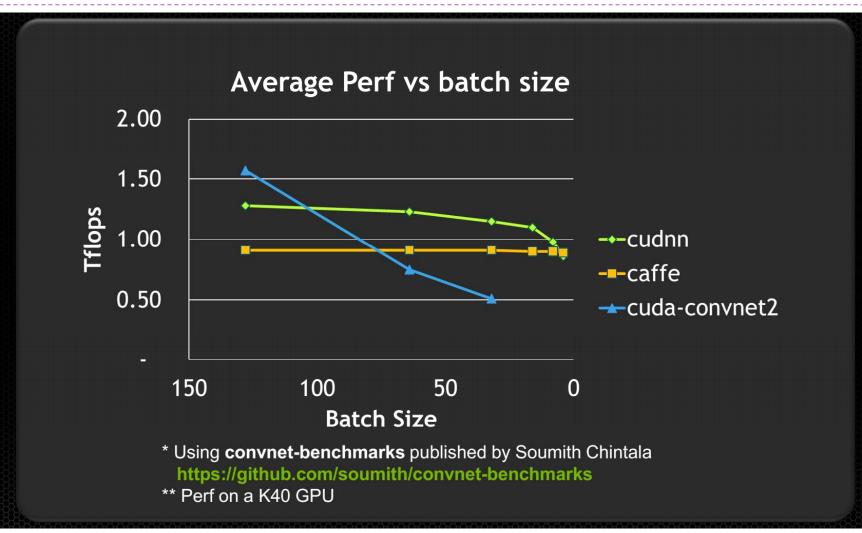
 $\forall k \in output \ color \ planes, (p,q) \in output \ image$

Implementation 2: Multi-convolve as GEMM



D

Performance



cuDNN Integration

- cuDNN is already integrated in major opensource frameworks
 - ► Caffe
 - ▶ Torch

Using Caffe with cuDNN

- Accelerate Caffe layer types by 1.2 -3x
- On average, 36% faster overall for training on Alexnet
- Integrated into Caffe dev brand today!(official release with Caffe 1.0)

Seamless integration with a global *CPU is 24 core E5-2697v2 @ 2.4GHz Intel MKL 11.1.3

switch

2015/1/25

Caffe with cuDNN: No Programming Required

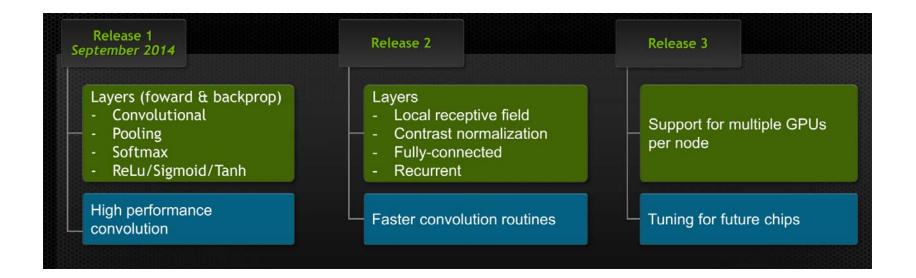
layers { name: "MyData" type: DATA top: "data" top: "label" layers { name: "Conv1" type: CONVOLUTION bottom: "MyData" top: "Conv1" convolution_param { num_output: 96 kernel_size: 11 stride: 4

layers {
name: "Conv2"
type: CONVOLUTION
bottom: "Conv1"
top: "Conv2"
convolution_param {
num_output: 256
kernel_size: 5
}

Caffe with cuDNN : Life is easy

- ▶ install cuDNN
- when installing Caffe.
- Acceleration is automatic

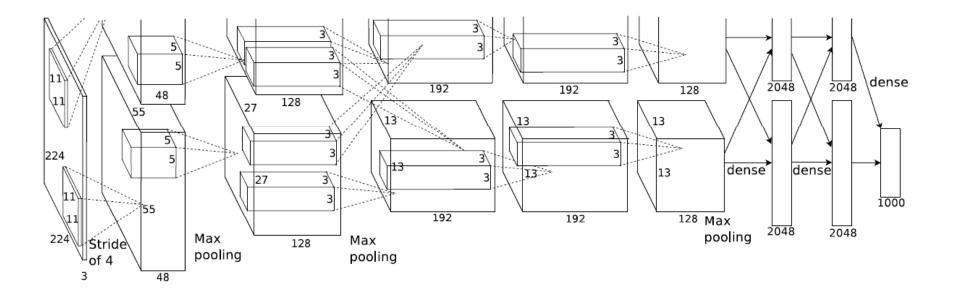
NVIDIA® cuDNN Roadmap



cuDNN availability

- Free for registered developers!
- Release 1 / Release 2 RC
 - > available on Linux/Windows 64bit
 - ▶ GPU support for Kepler and newer
- Already Done:
 - Tegra K1 (Jetson board)
 - Mac OSX support

Multi-GPU with CNN



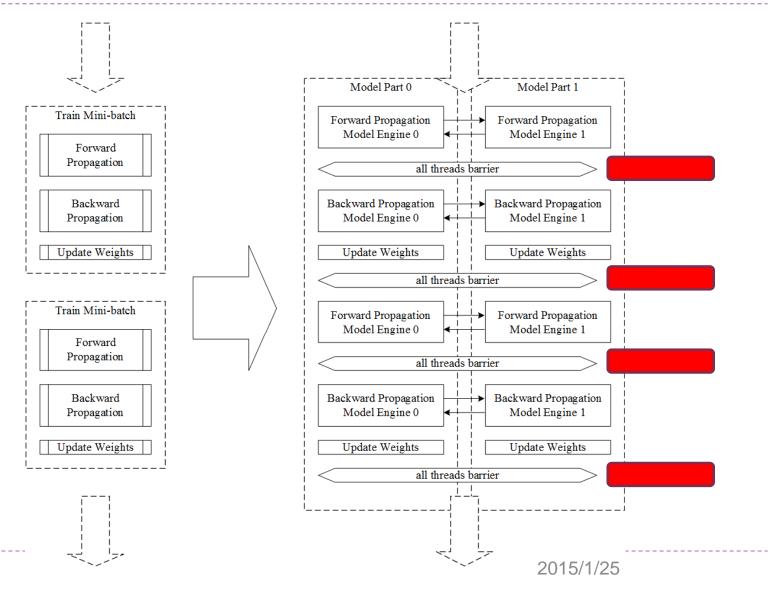
Problem:

- 1) Single GPU has limited memory, which limits the size of the network
- 2) Single GPU is still too slow for some very large scale network

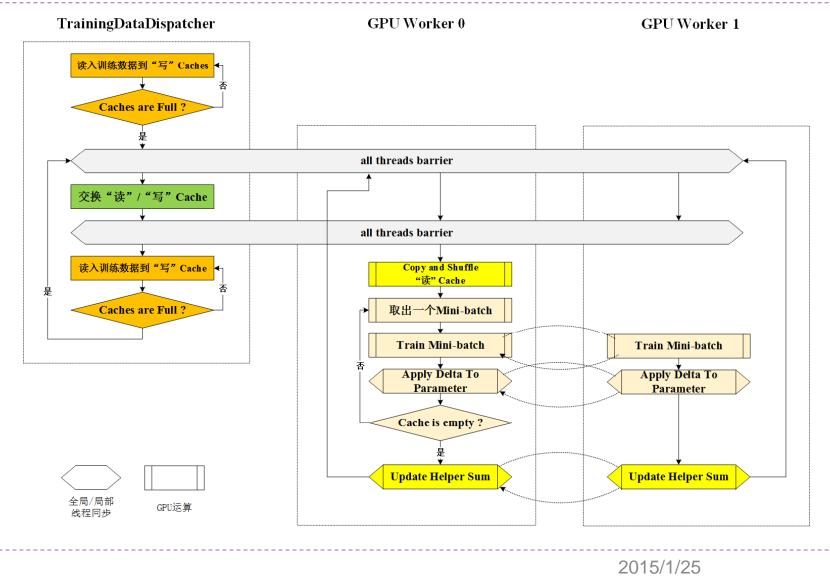
Multi-GPU Challenge

- First, How to parallelize the whole process, to avoid or reduce data dependency between different nodes
- Data IO and distribution to different Nodes
 Pipeline and IO/Execution overlap to hide latency
- > Synchronize between all the nodes??

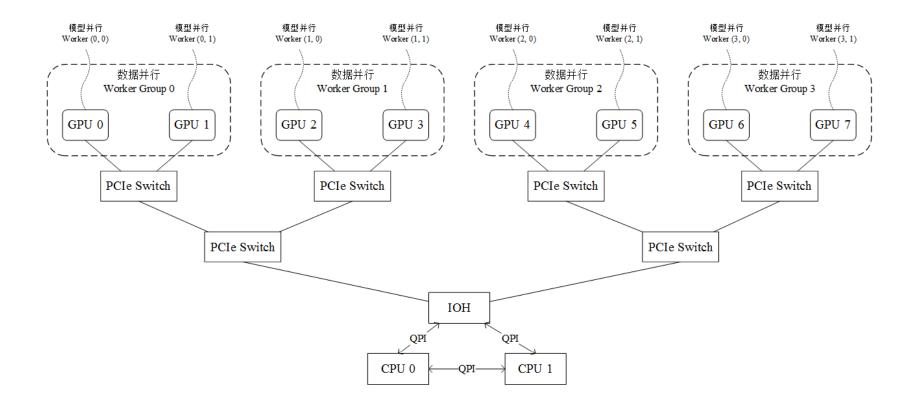
Multi-GPU Strategy



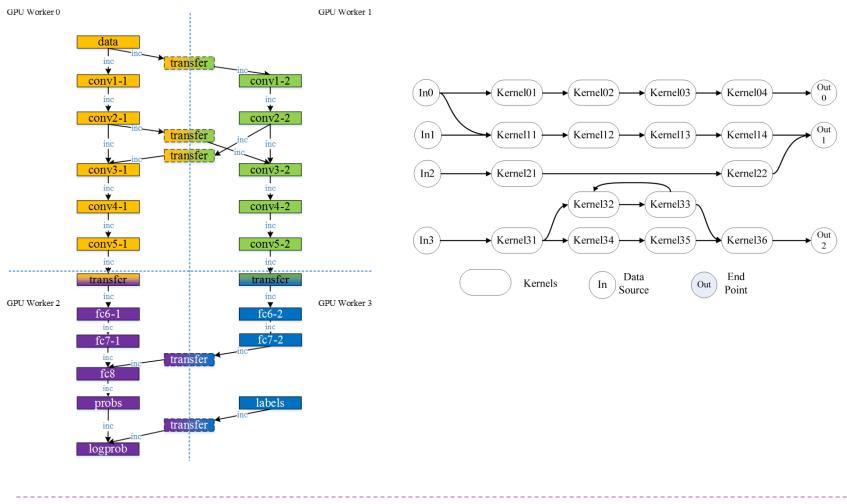
Data distribution IO/Exe Overlap



8-GPU server

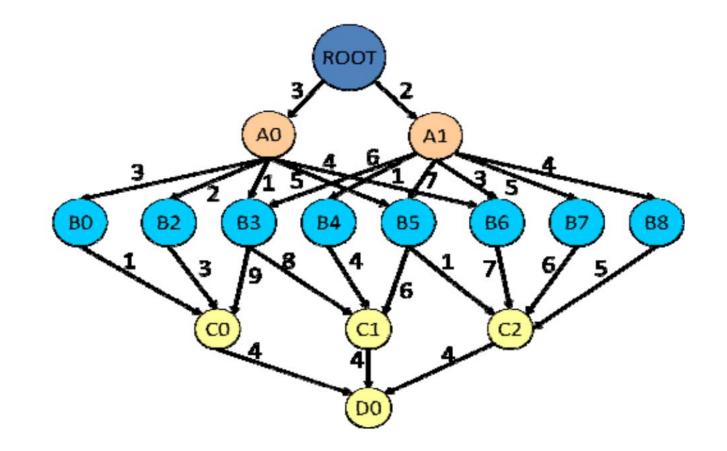


Pipeline and Stream processing in CNN



2015/1/25

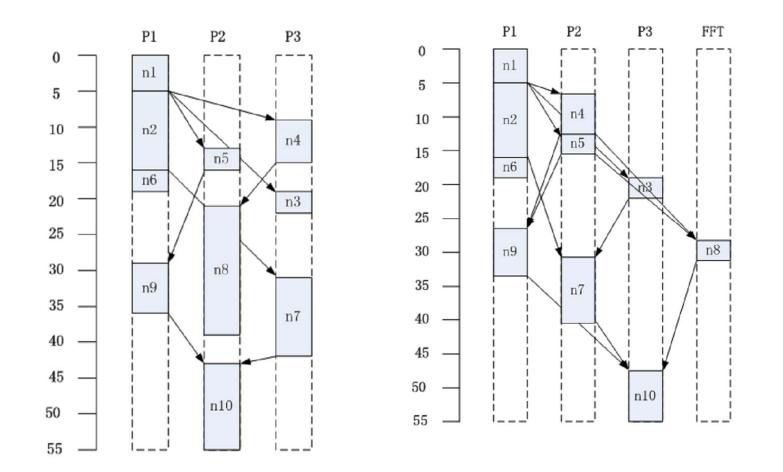
Familiar?? It's a DAG!



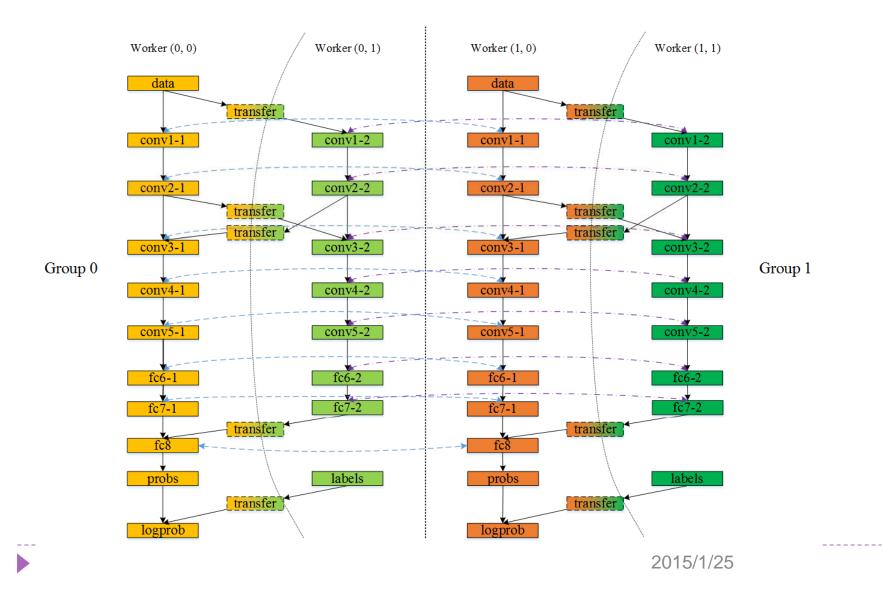
My Algorithm for DAG auto-Parallelization

WHILE Task List $! = \emptyset DO$ **GET** first task n_i ; FOR every p_i DO $EST(n_i, p_j) = \max\{available(p_j), \max_{n_m \in pred(n_i)}(AFT(n_m) + c_{m,i})\};\$ $f(n_i, p_j) = EST(n_i, p_j) + \sum_{n_m \in pred(n_i)} c_{m,i} / speed_j$ **ENDFOR SORT** $(f(n_i, p_i));$ **SCHEDULE** (n_i, p_i) with smallest $f(n_i, p_i)$; $AST(n_i) = EST(n_i, p_i); AFT(n_i) = AST(n_i) + w'_{i,i};$ $available(p_i) = EFT(n_i, p_i);$ **ENDWHILE**

Test Case



A More Complex Case



Speed with Multi-GPUs

Configuration	Speedup vs. 1 GPU
2 GPUs Model P.	1.71
2 GPUs Data P	1.85
4 GPUs Data P. + Model P.	2.52
4 GPUs Data P.	2.67

Conclusion

- ▶ GPU is very well suitable for CNN
- cuDNN is easy to use and good performance
- Multi-GPU is improving more.
- Carefully Designed parallel design on multi-GPU could get adequate scalability