Deep Belief Net

Xiaogang Wang

xgwang@ee.cuhk.edu.hk

February 9, 2015

ヘロト 人間 とくほとくほとう

イロン 不同 とくほ とくほ とう

2

Deep belief net

- Hinton et al. 2006
- DBN is a generative model, modeling the joint distribution of observed data x and hidden variables ({h¹,..., h[']}), P(x, h¹,..., h[']; θ)
- Hidden variables are structured into *l* layers and are treated as hierarchical feature representations
 P(x, h¹,..., h^l) = P(x|h¹)P(h¹|h²)...P(h^{l-1}, h^l)
- Learn the network parameters θ by maximizing the data likelihood $P(\mathbf{x}; \theta) = \sum_{\mathbf{h}^1, \dots, \mathbf{h}'} P(\mathbf{x}, \mathbf{h}^1, \dots, \mathbf{h}'; \theta)$

•
$$x_i, h_i^k \in \{0, 1\}$$

Unsupervised layerwise pre-training

- Each time only consider two layers h^{k-1} and h^k (h⁰ = x), assuming h^{k-1} is known and fixed
- The parameters between the two layers are learned by maximizing the likelihood $P(\mathbf{h}_{k-1})$
- The joint distribution P(h^{k-1}, h^k) of the two layers is approximated as Restricted Boltzmann Machine (RBM)
- Parameters of P(h^{k-1}, h^k) are learned with Contrastive Divergence (CD) and fixed
- \mathbf{h}^k is sampled from $P(\mathbf{h}^k | \mathbf{h}^{k-1})$ for the training of next layer, or estimated as $\hat{\mathbf{h}}^k = \int_{\mathbf{h}^k} P(\mathbf{h}^k | \mathbf{h}^{k-1})$

Fine tuning

- The top hidden layer is used as feature to predict class label
- After pre-training, the whole network is fine-tuned with backpropagation given supervised information (e.g. class label **y**) provided

イロト イポト イヨト イヨト

ъ

Graphical model

- Graphical models represent conditional independence between random variables
- Given C, A and B are independent:

P(A, B|C) = P(A|C)P(B|C)

P(A, B, C) = P(A, B|C)P(C) = P(A|C)P(B|C)P(C)

 Any two nodes are conditionally independent given the values of their parents.

Directed and undirected graphical model

- Directed graphical model
 - P(A, B, C) = P(A|C)P(B|C)P(C)
 - Any two nodes are conditionally independent give the values of their parents

- Undirected graphical model
 - $P(A, B, C) = \Phi_1(B, C)\Phi_2(A, C)$
 - A and B are conditionally independent given C, if all the paths connecting A and B are blocked by C

Energy-Based Models (EBM)

• Define a probability distribution through an energy function

$$p(\mathbf{x}) = \frac{e^{-E(\mathbf{x})}}{Z}$$

The normalization factor Z is called the partition function

$$Z = \sum_{\mathbf{x}} e^{-E(\mathbf{x})}$$

 An energy-based model can be learnt by performing (stochastic) gradient descent on the empirical negative log-likelihood of the training data

$$\ell(\theta, \mathcal{D}) = -\frac{1}{N} \sum_{\mathbf{x}^{(i)} \in \mathcal{D}} \log p(\mathbf{x}^{(i)})$$

・ロト ・ 理 ト ・ ヨ ト ・

• Use the stochastic gradient $-\frac{\partial \log p(\mathbf{x}^{(l)})}{\partial \theta}$ to update the parameters θ of the model

EBMs with hidden units

In some cases, we do not observe the example x fully, or we want to introduce some non-observed variables to increase the expressive power of the model. So we consider an observed part (x) and a hidden part h:

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) = \sum_{\mathbf{h}} \frac{e^{-E(\mathbf{x}, \mathbf{h})}}{Z}$$

Define the free energy as

$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-\mathcal{E}(\mathbf{x},\mathbf{h})}$$

- $P(\mathbf{x})$ can be written as $P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$ with $Z = \sum_{\mathbf{x}} e^{-\mathcal{F}(\mathbf{x})}$
- The data negative log-likelihood gradient has the form

$$-\frac{\partial \log p(\mathbf{x})}{\partial \theta} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \sum_{\tilde{\mathbf{x}}} p(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}$$

The first term increases the probability of training data (by reducing the corresponding free energy), while the second term decreases the probability of samples generated by the model.

EBMs with hidden units

- It is usually difficult to determine this gradient analytically, as it involves the computation of E_P[^{∂*F*(**x**)}/_{∂θ}], which is an expectation over all possible configurations of the input **x** under the distribution.
- To make the computation tractable, estimate the expectation using a fixed number of samples N, which are generated according to P.

$$-\frac{\partial \log p(\mathbf{x})}{\partial \theta} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}$$

• The key question is how to generate N from P.

イロト イポト イヨト イヨト

Boltzmann Machine (BM)

$$E(\mathbf{x}, \mathbf{h}; \theta) = -(\mathbf{b}'\mathbf{x} + \mathbf{c}'\mathbf{h} + \mathbf{h}'\mathbf{W}\mathbf{x} + \mathbf{x}'\mathbf{U}\mathbf{x} + \mathbf{h}'\mathbf{V}\mathbf{h})$$

 $\boldsymbol{\theta} = \{ \mathbf{b}', \mathbf{c}', \mathbf{W}, \mathbf{U}, \mathbf{V} \}$

Restricted Boltzmann Machine (RBM)

- RBM does not model the interactions of variables of the same layer
- E(x, h) is the energy function. Z = ∑_{x,h} e^{-E(x,h)} is call partition function and serves as a normalizing factor
- b, c, and W are the parameters to be learned

$$P(\mathbf{x}, \mathbf{h}) = \frac{e^{-E(\mathbf{x}, \mathbf{h})}}{\sum_{\mathbf{x}, \mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}}$$
$$P(\mathbf{x}) = \frac{\sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}}{\sum_{\mathbf{x}, \mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}}$$

 $E(\mathbf{x},\mathbf{h}) = -(\mathbf{b}'\mathbf{x} + \mathbf{c}'\mathbf{h} + \mathbf{h}'\mathbf{W}\mathbf{x})$

Xiaogang Wang Deep Belief Net

Restricted Boltzmann Machine (RBM)

Let $\mathbf{a} = \mathbf{W}\mathbf{x}$

$$P(\mathbf{h}|\mathbf{x}) \propto e^{(\mathbf{b}'\mathbf{x}+\mathbf{c}'\mathbf{h}+\mathbf{h}'\mathbf{a})}$$
$$\propto e^{(\mathbf{c}'\mathbf{h}+\mathbf{h}'\mathbf{a})}$$
$$= e^{\sum_i (c_i+a_i)h_i}$$
$$= \prod_i e^{(c_i+a_i)h_i}$$
$$= \prod_i f(h_i)$$

Since **x** is fixed,

$$P(\mathbf{h}|\mathbf{x}) \propto \prod_{i} f(h_i)$$

ъ

Therefore, $\{h_i\}$ are conditional independent given **x**.

Restricted Boltzmann Machine (RBM)

{*h_i*} are conditionally independent given **x**. {*x_j*} are conditionally independent given **h**.

$$P(\mathbf{h}|\mathbf{x}) = \prod_{i} P(h_i|\mathbf{x})$$

 $P(\mathbf{x}|\mathbf{h}) = \prod_{i} P(x_i|\mathbf{h})$

• The conditional distributions have analytical solutions

$$P(x_j = 1 | \mathbf{h}) = \sigma(b_j + \mathbf{W}'_{\cdot j} \cdot \mathbf{h})$$

$$P(h_i = 1 | \mathbf{x}) = \sigma(c_i + \mathbf{W}_{i \cdot} \cdot \mathbf{x})$$

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

イロト イポト イヨト イヨト

ъ

Restricted Boltzmann Machine (RBM)

 Assuming there are N training samples X = [x⁽¹⁾,..., x^(N)], the parameters θ are estimated by maximizing the log-likelihood

$$L(\mathbf{X}; \theta) = \frac{1}{N} \sum_{n=1}^{N} \log P(\mathbf{x}^{(n)}; \theta)$$
$$\theta_{t+1} = \theta_t + \eta \frac{\partial L(\mathbf{X}; \theta)}{\partial \theta}$$

イロト イポト イヨト イヨト

= 990

Contrastive Divergence (CD)

$$P(\mathbf{x};\theta) = \frac{\sum_{\mathbf{h}} e^{(\mathbf{b}'\mathbf{x}+\mathbf{c}'\mathbf{h}+\mathbf{h}'\mathbf{W}\mathbf{x})}}{\sum_{\mathbf{x},\mathbf{h}} e^{(\mathbf{b}'\mathbf{x}+\mathbf{c}'\mathbf{h}+\mathbf{h}'\mathbf{W}\mathbf{x})}} = \frac{f(\mathbf{x};\theta)}{Z(\theta)}$$

$$\frac{\partial L(\mathbf{X};\theta)}{\partial w_{ji}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}} - \frac{\partial \log Z(\theta)}{\partial w_{ij}}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}} - \frac{1}{Z(\theta)} \frac{\partial Z(\theta)}{\partial \theta}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}} - \sum_{\mathbf{x}} \frac{1}{Z(\theta)} \frac{\partial f(\mathbf{x};\theta)}{\partial w_{ij}}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}} - \sum_{\mathbf{x}} \frac{f(\mathbf{x};\theta)}{Z(\theta)} \frac{1}{f(\mathbf{x};\theta)} \frac{\partial f(\mathbf{x};\theta)}{\partial w_{ij}}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}} - \sum_{\mathbf{x}} \frac{f(\mathbf{x};\theta)}{Z(\theta)} \frac{1}{f(\mathbf{x};\theta)} \frac{\partial f(\mathbf{x};\theta)}{\partial w_{ij}}$$

Xiaogang Wang De

Deep Belief Net

Contrastive Divergence (CD)

$$\frac{\partial L(\mathbf{X};\theta)}{\partial w_{ij}} = -\sum_{\mathbf{x}} P(\mathbf{x};\theta) \frac{\partial \log f(\mathbf{x};\theta)}{\partial w_{ij}} + \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log f(\mathbf{x}^{(n)};\theta)}{\partial w_{ij}}$$

$$= - \langle \frac{\partial \log f(\mathbf{x};\theta)}{\partial \theta} \rangle_{model} + \langle \frac{\partial f(\mathbf{x};\theta)}{\partial \theta} \rangle_{data}$$

$$= \langle \frac{\partial E(\mathbf{x})}{\partial \theta} \rangle_{model} - \langle \frac{\partial E(\mathbf{x})}{\partial \theta} \rangle_{data}$$

$$= - \langle x_i h_j \rangle_{model} + \langle x_i^{(n)} h_j \rangle_{data}$$

$$= - \sum_{\mathbf{x},\mathbf{h}} P(\mathbf{x},\mathbf{h};\theta) x_i h_j + \frac{1}{N} \sum_{n=1}^{N} \sum_{h_i} P(h_j | \mathbf{x}^{(n)};\theta) x_i^{(n)} h_j$$

$$\underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}} \underbrace{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}}} \underbrace{\mathbf{x}_{$$

Contrastive Divergence

- < x_i⁽ⁿ⁾ h_j >_{data} is the estimation of the average of x_ih_j from the empirical distribution on the training set
- $< x_i h_j >_{model}$ can be esimated from infinite number of samples $\{\tilde{\mathbf{x}}^{(m)}\}_{m=1}^{\infty}$ randomly drawn from $P(\mathbf{x}; \theta)$

$$egin{aligned} &rac{\partial L(\mathbf{X}; heta)}{\partial m{w}_{ji}} pprox &-rac{1}{M}\sum_{ar{\mathbf{x}}^{(m)} \sim P(\mathbf{x}; heta)}\sum_{ar{h}_j^{(m)}} P(ilde{h}_j^{(m)} |ar{\mathbf{x}}^{(m)}; heta) ilde{x}_i^{(m)} ilde{h}_j^{(m)} \ &+rac{1}{N}\sum_{n=1}^N\sum_{h_i} P(h_j |oldsymbol{x}^{(n)}; heta) x_i^{(n)} h_j \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Contrastive Divergence

- {x̃^(m)} can be generated from Markov Chain Monte Carlo (MCMC).
 Gibbs sampling is a commonly used MCMC approach and was used by Hinton et al. (1986).
- Starting from any training sample $\tilde{\mathbf{x}}^{(0)}$, a sequence of samples $\tilde{\mathbf{x}}^{(1)}, \ldots, \tilde{\mathbf{x}}^{(M)}$ are generated in the following way

```
\begin{split} \tilde{\mathbf{h}}^{(0)} &\sim P(\mathbf{h} | \mathbf{x}^{(0)}) \\ \tilde{\mathbf{x}}^{(1)} &\sim P(\mathbf{x} | \tilde{\mathbf{h}}^{(0)}) \\ \tilde{\mathbf{h}}^{(0)} &\sim P(\mathbf{h} | \tilde{\mathbf{x}}^{(1)}) \end{split}
```

$$\tilde{\mathbf{x}}^{(M)} \sim P(\mathbf{x}|\tilde{\mathbf{h}}^{(M-1)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\mathbf{\tilde{x}}^{(1)}, \dots, \mathbf{\tilde{x}}^{(M)}$ follow the distribution of $P(\mathbf{x})$
- MCMC is slow

Contrastive Divergence

- Stochastic gradient descent: replacing the average over all the training samples with a single training sample
- Starting from the chosen training sample x⁽ⁿ⁾, only do one step MCMC sampling and use the generated sample x̃_i⁽¹⁾ ñ_j⁽¹⁾ to approximate < x_ih_j >_{model} which is supposed to estimated from infinite number of samples generated from MCMC

$$\frac{\partial L(\mathbf{X};\theta)}{\partial w_{ji}} \approx -\tilde{x}_{i}^{(1)}P(\tilde{h}_{j}^{(1)} = 1|\tilde{x}_{i}^{(1)}) + x_{i}^{(n)}P(h_{j}^{(n)} = 1|\mathbf{x}^{(n)})$$
$$\frac{\partial L(\mathbf{X};\theta)}{\partial b_{i}} \approx -\tilde{x}_{i}^{(1)} + x_{i}^{(n)}$$
$$\frac{\partial L(\mathbf{X};\theta)}{\partial c_{i}} \approx -P(\tilde{h}_{j}^{(1)} = 1|\tilde{x}_{i}^{(1)}) + P(h_{j}^{(n)} = 1|\mathbf{x}^{(n)})$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Contrastive Divergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Convergence of Contrastive Divergence

- The stationary points of maximum likelihood (ML) estimation is not the stationary points of CD
- CD is biased, but the bias is typically small
- CD can be used for getting close to ML solution and then ML learning can used for fine-tuning
- It is not clear whether CD learning converges

ヘロト ヘアト ヘビト ヘビト

ъ

Filters learned by RBM

Filters learned by RBM

Samples generated by RBM from Gibbs sampling

ヘロン ヘアン ヘビン ヘビン

ъ

RBM for classification

- Larochelle and Bengio 2008
- y: vector of class label

$$p(y, \mathbf{x}, \mathbf{h}) \propto e^{-E(y, \mathbf{x}, \mathbf{h})}$$

$$E(y, \mathbf{x}, \mathbf{h}) = -\mathbf{h}' \mathbf{W} \mathbf{x} - \mathbf{b}' \mathbf{x} - \mathbf{c}' \mathbf{h} - \mathbf{d}' \mathbf{y} - \mathbf{h}' \mathbf{U} \mathbf{y}$$

$$p(y|\mathbf{x}) = \frac{e^{d_y} \prod_j (1 + e^{c_j + U_{jy} + \Sigma_i W_{jj} x_j})}{\sum_{y^*} e^{d_{y^*}} \prod_j (1 + e^{c_j + U_{jy^*} + \Sigma_i W_{jj} x_j})}$$

Xiaogang Wang

イロト 不得 とくほと くほとう

₹ 990

RBM for classification

Update

$$\frac{\partial \log p(y^{(n)} | \mathbf{x}^{(n)})}{\partial \theta} = \sum_{j} \sigma(o_{y^{(n)}j}(\mathbf{x}^{(n)})) \frac{\partial o_{y^{(n)}j}(\mathbf{x}^{(n)})}{\partial \theta}$$
$$- \sum_{j,y^{*}} \sigma(o_{y^{*}j}(\mathbf{x}^{(n)})) p(y^{*} | \mathbf{x}^{(n)}) \frac{\partial o_{y^{*}j}(\mathbf{x}^{(n)})}{\partial \theta}$$
$$o_{yj}(\mathbf{x}) = c_{j} + \sum_{i} w_{ji} x_{i} + U_{jy}$$

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

RBM leads to distributed representation

- Each hidden unit can be treated as an attribute and creates a 2-region partition of the input space. The binary setting of the *N* hidden units identifies one region in input space among all the 2^{*N*} regions associated with configurations of the hidden units
- If the distribution P(x) represented by RMB is transformed to a mixture model, it is a sum over an exponential number of configurations

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}|\mathbf{h}) P(\mathbf{h})$$

ヘロト ヘアト ヘビト ヘビト

æ

RBM leads to distributed representation

• RBM can be represented as a product of experts

$$egin{aligned} \mathcal{P}(\mathbf{x}) \propto e^{\mathbf{b}' \mathbf{x} + \sum_j \log \sum_{h_j} e^{h_j \mathbf{W}_j, \mathbf{x}}} \ \propto \prod_j e^{f_j(x)} \end{aligned}$$

where $f_j = \log \sum_{h_i} e^{h_j \mathbf{W}_{j} \cdot \mathbf{x}}$

- $f_j(\mathbf{x})$ is an attribute indicator
- Hinton (1999) explains the advantages of a product of experts by opposition to a mixture of experts
 - In a mixture model, the constraint associated with an expert is an indication of belonging to a region which excludes the other regions
 - In a product of experts, the set of $f_j(\mathbf{x})$ form a distributed representation: partition the space according to all the possible configurations (where each expert can have its constraint violated or not)

Product of expert models vs mixture of expert models

- A mixture distribution can have high probability for event x when only a single expert assigns high probability to that event; while a product can only have high probability for an event x when no expert assigns an especially low probability to that event
- A single expert in a mixture has the power to pass a bill while a single expert in a product has the power to veto it
- Each component in a product prepresents a soft constraint. For an event to be likely under a product model, all constraints must be (approximately) satisfied
- Each expert in a mixture represents a soft **template or prototype**. An event is likely under a mixture model if it (approximately) matches with **any single template**

ヘロト 人間 ト ヘヨト ヘヨト

Belief nets

- A belief net is a directed acyclic graph composed of random variables
- Also called Bayesian network

イロト 不得 とくほと くほとう

ъ

Deep belief nets

- Belief net that is deep
- A generative model

$$P(\mathbf{x},\mathbf{h}_1,\ldots,I)=P(\mathbf{x}|\mathbf{h}_1)P(\mathbf{h}_1|\mathbf{h}_2)\ldots P(\mathbf{h}_{I-2}|\mathbf{h}_{I-1})P(\mathbf{h}_{I-1},\mathbf{h}_I)$$

P(h^{k-1}|h^k) (x = h⁰) is conditional distribution for the visible units conditional on the hidden units of the RBM at level k

$$P(\mathbf{h}^{k-1}|\mathbf{h}^k) = \prod_i P(h_i^{k-1}|\mathbf{h}^k)$$

$$P(h_j^{k-1} = 1 | \mathbf{h}^k) = \sigma(b_j^k + \mathbf{W}_{\cdot j}^{k'} \mathbf{h})$$

• $P(\mathbf{h}^{l-1}, \mathbf{h}^{l})$ is model as RBM

Xiaogang Wang D

Deep Belief Net

イロト イポト イヨト イヨト

ъ

The inference of DBN is problematic

- Explaining away: $P(h_{11}, h_{12}|x_1) \neq P(h_{11}|x_1)P(h_{12}|x_1)$
- Different from RBM, DNB is a directed graphical model. Given **x**, h_1, \ldots, h_n are not independent any more. Only when $P(\mathbf{h})$ adopts certain prior (called complementary prior), DBN is equivalent to RBM, $P(\mathbf{x}, \mathbf{h}) = P(\mathbf{x}|\mathbf{h})P(\mathbf{h})$. The details of the complementary prior can be found in Hinton et al. 2006.
- Therefore, only feedforward approximate inference is used for DBN: no bottom-up and top-down

Pre-training

- Each time only consider two layers h^{k-1} and h^k (h⁰ = x), assuming h^{k-1} is known and fixed
- The parameters between the two layers are learned by maximizing the likelihood $P(\mathbf{h}_{k-1})$
- The joint distribution P(h^{k-1}, h^k) of the two layers is approximated as Restricted Boltzmann Machine (RBM)
- Parameters of P(h^{k-1}, h^k) are learned with Contrastive Divergence (CD) and fixed
- \mathbf{h}^k is sampled from $P(\mathbf{h}^k | \mathbf{h}^{k-1})$ for the training of next layer, or estimated as $\hat{\mathbf{h}}^k = \int_{\mathbf{h}^k} P(\mathbf{h}^k | \mathbf{h}^{k-1})$
- Because of the problem on inference, no joint optimization over all layers

Fine tuning deep belief net

- Convert DBN to a normal multilayer neural network
- The outputs of hidden units are calculated from the inputs of the lower layer in a deterministic way

$$h_j^k = P(h_j^k = 1 | \mathbf{h}^{k-1}) = \sigma(c_j + \mathbf{W}_{j} \cdot \mathbf{h}^{k-1})$$

 $\bm{h}^0 = \bm{x}$

• Fine tune the network with backpropagation

イロト イポト イヨト イヨト

ъ

Deep Boltzmann Machine

- Unsupervised feature learning
- The following slides are borrowed from Salakhutdinov's tutorial at CVPR 2012

イロト 不得 とくほと くほとう

■ のへで

Model

$$P_{\theta}(\mathbf{v}) = \frac{P^{*}(\mathbf{v})}{\mathcal{Z}(\theta)} = \frac{1}{\mathcal{Z}(\theta)} \sum_{\mathbf{h}^{1}, \mathbf{h}^{2}, \mathbf{h}^{3}} \exp\left[\mathbf{v}^{\top} W^{1} \mathbf{h}^{1} + \mathbf{\underline{h}^{1}}^{\top} W^{2} \mathbf{h}^{2} + \mathbf{\underline{h}^{2}}^{\top} W^{3} \mathbf{h}^{3}\right]$$

Deep Boltzmann Machine

 $\theta = \{W^1, W^2, W^3\}$ model parameters

- Dependencies between hidden variables.
- All connections are undirected.
- Bottom-up and Top-down:

$$P(h_j^2 = 1 | \mathbf{h}^1, \mathbf{h}^3) = \sigma \bigg(\sum_k W_{kj}^3 h_k^3 + \sum_m W_{mj}^2 h_m^1 \bigg)$$

Top-down Bottom-up

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Input

Learning

$$P_{\theta}(\mathbf{v}) = \frac{P^{*}(\mathbf{v})}{\mathcal{Z}(\theta)} = \frac{1}{\mathcal{Z}(\theta)} \sum_{\mathbf{h}^{1}, \mathbf{h}^{2}, \mathbf{h}^{3}} \exp\left[\mathbf{v}^{\top} W^{1} \mathbf{h}^{1} + \mathbf{h}^{1^{\top}} W^{2} \mathbf{h}^{2} + \mathbf{h}^{2^{\top}} W^{3} \mathbf{h}^{3}\right]$$

Deep Boltzmann Machine

 $\theta = \{W^1, W^2, W^3\}\,$ model parameters

• Dependencies between hidden variables.

Maximum likelihood learning:

$$\frac{\partial \log P_{\theta}(\mathbf{v})}{\partial W^{1}} = \mathbf{E}_{P_{data}}[\mathbf{v}\mathbf{h}^{1\top}] - \mathbf{E}_{P_{\theta}}[\mathbf{v}\mathbf{h}^{1\top}]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Problem: Both expectations are intractable!

Learning

Approximate conditional $P_{data}(\mathbf{h}|\mathbf{v})$

Simulate from the Model

Approximate the joint distribution $P_{model}(\mathbf{h}, \mathbf{v})$

(Salakhutdinov, 2008; NIPS 2009)

イロト 不同 とくほ とくほ とう

3

Learning

Xiaogang Wang Deep Belief Net 3

Learning

Xiaogang Wang Deep Belief Net

イロト イポト イヨト イヨト

Sampling from DBMs

Sampling from two-hidden layer DBM: by running Markov chain:

Reading materials

- G. E. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, Vol. 18, pp. 1527-1544, 2006.
- H. Larochelle and Y. Bengio, "Classification using Discriminative Restricted Boltzmann Machines", ICML 2008.
- G. E. Hinton, "Products of Experts," Proc. Int'l Conf. Artificial Neural Networks, 1999.
- R. Salakhutdinov and G. Hinton, "Deep Boltzmann Machines," AISTATS 2009.

ヘロン 人間 とくほ とくほ とう

3