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1 Problem 1

The gradient for the thresholding function f(s) will be zero except the zero point. And
it’s difficult for the error to backpropagate from top layers to bottom layers.

wnew := wold − lr ∗
∂L

∂f

∂f

∂w
= wold − 0 = wold (1)

2 Problem 2

• initialization problem, the initial weights are set to the saturation positions where
gradients are close to 0.

• the whole network doesn’t find the global optimum due to the initialization problem
or the learning method(such as backpropagation)

• limitation of iterations

• . . .

3 Problem 3

The trivial solution is the identity matrix. The reasons is, the autoencoder wants to
reconstruct the input data and the identity matrix can satisfy that requirement.

The ways of adding regularization to avoid such a trivial solution:

• the number of neuron nodes in the hidden layers should be less than the input
dimension.

• using corrupted data or noise data to reconstruct correct data

• add L-x normalization for the weights between the layers.

• . . .
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4 Problem 4

False. Because the channel number of the convolution layer can be very large which
means a lot of filters exist in the convolution layer, then the dimension of output can be
larger than that of input data. Thus the number of neurons is not always reduced.

5 Problem 5

As
∑c

k=1 zi,k = 1, the value zi,k can be regarded as the predicting probability for sample
i to be class k.

The object function of cross entropy is

Loss =−
N∑
i=1

c∑
j=1

1(yi == j)logzi,j = −
N∑
i=1

logzi,yi (2)

=−
N∑
i=1

logPi,yi = −logΠN
i=1Pi,yi (3)

Here 1(x) = 1 if x is true, else 1(x) = 0.
Thus the cross entropy is equivalent to the negative log-likelihood on the training

dataset.

6 Problem 6

∂L

∂wj,i′
=

∂L

∂netj
∗ ∂netj
wj,i′

=
∂L

∂netj
∗ xi′ (4)

⇒ ∂L

∂wj,i′
=0 if xi′ = 0 (5)

Thus all the weights wj,i′ cannot be updated.
The input-to-hidden weights will not be updated at the first iteration but will be

updated in the following iterations.

∂L

∂wk,j
=

∂L

∂netk
∗ ∂netk
∂wk,j

=
∂L

∂netk
∗ yj (6)

∂L

∂yj
=

c∑
k=1

∂L

∂netk

∂netk
∂yj

=

c∑
k=1

∂L

∂netk
wk,j (7)

∂L

∂wj,i
=

H∑
j=1

∂L

∂yj

∂yj
∂netj

∂netj
∂wj,i

=
H∑
j=1

∂L

∂yj

∂yj
∂netj

xi (8)

If all the hidden-to-output weights are initialized as zeros, then wk,j = 0, ∂L
∂yj

= 0,
∂L

∂wj,i
= 0. Thus the input-to-hidden weights will not be updated at the first iteration.
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But in the following iterations wk,j will be updated to be non-zeros and the input-to-
hidden weights will be updated.

7 Problem 7

∂f

∂s
=

4

(es + e−s)2
(9)

∂2f

∂2s
= − 8(e2s − e−2s)

(e2s + 2 + e−2s)2
(10)

Small weights mean that the input s for nonlinear function are small and close to 0. When

s is close to 0, ∂2f
∂2s

is close to 0 which means the nonlinear function can be approximated
as one linear function. Thus the network approximates a linear classifier.

Large weights mean that the input s for nonlinear function are large and far away
from 0. When s is far from 0, ∂f

∂s is close to 0 which means the gradients of weights
should be very small. Thus it’s hard to update the weights.

The weights should be set to make sure the input for nonlinear function is close to
the extreme point of second derivative. At that point, the first-order derivative is not so
small and the second-order derivative is a extreme value.

8 Problem 8

P (h|x) =
P (h, x)

P (x)
=

P (h, x)∑
h P (h, x)

(11)

=
e−E(x,h)∑
h e
−E(x,h)

=
eb

T x+cT h+hTWx∑
h e

bT x+cT h+hTWx
(12)

=
ec

T h+hTWx∑
h e

cT h+hTWx
=

e(c
T+xTWT )h∑

h e
(cT+xTWT )h

(13)

=
e
∑

i (c
T+xTWT )ihi∑

h e
∑

i (c
T+xTWT )ihi

=
Πie

(cT+xTWT )ihi∑
h Πie(c

T+xTWT )ihi
(14)

=
Πie

(cT+xTWT )ihi

Πi
∑

hi
e(cT+xTWT )ihi

= Πi
e(c

T+xTWT )ihi∑
hi
e(cT+xTWT )ihi

(15)

P (hi|x) =

∑
j 6=i P (hj , hi, x)

P (x)
=
e(c

T+xTWT )ihi
∑

j 6=i Πje
(cT+xTWT )jhj

Πi
∑

hi
e(cT+xTWT )ihi

(16)

=
e(c

T+xTWT )ihi
∑

j 6=i Πje
(cT+xTWT )jhj

Πi
∑

hi
e(cT+xTWT )ihi

=
e(c

T+xTWT )ihi∑
hi
e(cT+xTWT )ihi

(17)

⇒P (h|x) = ΠiP (hi|x) (18)
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As the possible value for h contains only 0 and 1, thus

P (hi = 1|x) =
e(c

T+xTWT )i1

e(cT+xTWT )i0 + e(cT+xTWT )i1
=

1

1 + e−(ci+(Wx)Ti )
= σ(ci +Wi ∗ x) (19)

9 Problem 9

For the receptive field of a neuron output of the pooling layer in (a), it’s 8 × 8; For the
receptive field of a neuron of the second convolution layer in (b), it’s 13 × 13.
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