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Our first deep learning project
—January 2011
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We wish to work on pedestrian detection

Where to start?

Our understanding of deep learning

— DBN

— Unsupervised learning

— Model complex nonlinear relationship
of variables



Pedestrian detection

G. Duan, H. Ai, and S. Lao, “A structural filter approach to human detection,” in
ECCV, 2010.
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Use manually defined rules to describe the relationship between the visibility of a part and its
overlapping larger parts and smaller parts, e.g. if the head or the torso was invisible, its larger
part of upper-body should also be invisible.



Deep learning?  Deep belief net

p(ylx) = Zp y.h|x) =) p(ylh, x)p(h[x)
h

* The hidden units in BDN have no physical meaning
* DBN is fully connected

W. Ouyang and X. Wang, “A Discriminative Deep Model for Pedestrian Detection with
Occlusion Handling,” CVPR 2012



Detection
scores s
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De‘rctiﬂn label y

Image x

1. Part detection, 2. Visibility estimation,
3. Detection score integration

1. obtain the detection scores s by part detectors;

2. use s and x to estimate visibility probability p(h|x):
3. combine the detection scores s with the visibility
probability p(h|x) to estimate the probability of an input
window being pedestrian, c.f. (2) and (3).




e Each hidden unit is associated with a part detection score
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Structural filter

Manual design

Purely rely on
domain knowledge

Intuition is correct,
but very few
parameter setting
are explored

Borrow the idea
from structural
filter, but allow to
explore many
more parameter
settings and learn
from data under
the formulation of
DBN

DBN

Learn from data

Black box

No domain
knowledge

No physical
meaning




Deep Learning Won ImageNet Image
Classification Challenge 2012

Our understanding of deep learning
— Large scale supervised learning with CNN
— The key of deep learning is to learn feature
representation



How to learn features in pedestrian detection?

It may not be a good idea to treat deep learning
as a black box

convolutions subsampling convolutions full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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Bridge the connection between deep learning
and conventional systems

Training or Training or Manual
manual design manual design design
Data Preprocessin Preprocessin Feature e
) —> P & P & ] Classification
collection step 1 step 2 extraction
?@ 291 20
Data Feature Feature Feature cee L
. Classification
collection transform transform transform

End-to-end learning

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and
increasing the capacity of the learner




Feature Part deformation Occlusion
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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e Design the filters in the second
convolutional layer with variable sizes
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Part models learned
from HOG

Head-shoulder
at level 2

Head-torso
at level 3

Legs
at level 2

Torso
at level 2

Head-shoulder
at level 3

Full-body
at level 3

Learned filtered at the second
convolutional layer



Summed map

Part score

Low High
value value

M, D,

Part detection

map Deformation maps




Visibility Reasoning with Deep Belief Net
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Correlates with part detection score
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e Caltech — Test dataset (largest, most widely used)
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e Caltech — Test dataset (largest, most widely used)
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Rapid object detection using a boosted cascade of simple features
P Viola, M Jones - ... Vision and Pattern Recognition, 2001. CVPR .., 2001 - ieeexplore.ieee.org.org

Abstract This paper describes a machine learning approach for visual object detection which |
Is capable of processing images extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first is the introduction of a new ...

Cited by 7647 Related articles All 201 versions Importinto BibTeX More«
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e Caltech — Test dataset (largest, most widely used)
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Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ..., 2005 - ieeexplore.ieee.org
.. We study the issue of feature sets for human detection, showing that lo- cally normalized
Histogram of Oriented Gradient (HOG) de- scriptors provide excellent performance relative

to other ex- isting feature sets including wavelets [17,22]. ...

Cited by 5438 Related articles All 106 versions Import into BibTeX More~
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e Caltech — Test dataset (largest, most widely used)
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Object detection with discriminatively trained part-based models

PF Felzenszwalb, RB Girshick... - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org
Abstract We describe an object detection system based on mixtures of multiscale
deformable part models. Our system is able to represent highly variable object classes and
achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions Import into BibTeX More~
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W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,” CVPR 2012.

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.

W. Ouyang, Xiaogang Wang, "S

ingle-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.

X. Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.
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Can this idea be generalized to general
object detection in ImageNet?

Deformation of parts is widely observed in
general objects

g
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Deformation Layer [b]
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[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ", ICCV 2013.



Modeling Part Detectors

e Different parts have different sizes
e Design the filters with variable sizes

Part models learned
from HOG

Head-torso Head-shoulder Legs

N
at level 3 at level 2 at level 2
Level 3 . . .
| |
3o it
Level 2

. |
SR I ﬁ m Head-shoulder Full-body Torso
L ) at level 3 at level 3 at level 2

Part models Learned filtered at the second
convolutional layer

=0




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class  Patterns shared across different object classes




Deformation constrained pooling layer

Can capture multiple patterns simultaneously
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Our deep model with deformation layer

Existing deep model (clarifai-fast)

convs fc6  fc7

%":‘;;;‘conv6 | def6, conv7/, 00
\ _
Layers with "":j;-‘_‘ 128 128~
def-pooling
layers convé; defé; conv7
4 g ’ ’ Patterns shared across
E—»ﬂ{ - different classes
128 [28
Cls+Det
Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385



 ImageNet 2014 — object detection challenge

GooglLeNet | DeeplD-Net | Deeplnsight Berkley RCNN
(Google) (CUHK) Vision
n/a n/a

Model 0.439 0.439 0.405 n/a
average

Single 0.380 0.427 0.402 0.354 0.345 0.314
model

W. Ouyang et al. “DeeplD-Net: deformable deep convolutional neural networks for
object detection”, CVPR, 2015



Our understanding of deep learning
— Most two important operations (filtering
and pooling) have been widely used in
computer vision
— Expect other domain knowledge can inspire
new layers such as deformation-pooling



Many important ideas in object detection
can be generalized to deep learning...

Multi-Stage Contextual Deep Learning:

<> Simulate cascaded detector and contextual boost

< Train different detectors for different types of samples
<> Model contextual information

<> Stage-by-stage pretraining strategies

X. Zeng, W. Ouyang and X. Wang, "Multi-Stage Contextual Deep Learning for Pedestrian Detection," ICCV 2013
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* The classifier of each stage deals with a specific set
of samples

 The score map output by one classifier can serve as
contextual information for the next classifier
+** Only pass one detection

| s n .* \ | score to the next stage

e D - % Classifiers are trained
| sequentially

Conventional cascaded classifiers for detection
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Input Image Preprocess Image Context + Adaboost Contextual Boost Detection Result
Preprocessing Image Adaboost Classification Adaboost
Per-pixel Gradient — Context : Classification -~ Context - Classification
Per-block average Multi-scale HOG-LDP | Based an Responses at Scale & Based on
values at Multi-Scales for Each Scan Window Image Context Spatial Neighbarhood Augmented Context

Multl-Scale Context
HOG-LDP Features

. — = _I p L3 -
(a) Original Window and (b) High Resolution {c) Middle-Res HOG on  (d) Middle-Res(e) Low-Res HOG (e) LDP on (fiCompute (g} Extract Multi-Scale Contextual HOG-LDP feature Components
Neighbor Windows Center HOG Neighbor Windows Center HOG on Whole Whaole LDP from Pre-computed Multi-Scale Gradient and Block Averages

Y. Ding and J. Xiao, “Contextual Boost for Pedestrian Detection,” CVPR 2012
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* Simulate the cascaded classifiers by mining hard samples to train the network
stage-by-stage

e Cascaded classifiers are jointly optimized instead of being trained sequentially

* The deep model keeps the score map output by the current classifier and it
serves as contextual information to support the decision at the next stage

* To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize
optimization

* Multi-stage deep learning can be formulated as recurrent neural network

Pedestrian?
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Unsupervised pre-train W, ;,, layer-by-layer, setting W, ,,, =0, F,, =0

Fine-tune all the W, ;,, with supervised BP
Train F;,; and W, ., with BP stage-by-stage

A correctly classified sample at the previous stage does not influence the

update of parameters

Stage-by-stage training can be considered as adding regularization
constraints to parameters, i.e. some parameters are constrained to be

zeros in the early training stages
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Log error function:
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False positives of Net-NoneFilters

miss rate

False negatives of Net-NoneFilters
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Comparison of Different Training Strategies

80F

64

50
40

30

miss rate

20

10

m m =49 PretrainTransferMatrix—BP

10 10°
false positives per image

Network-BP: use back propagation to update all the parameters without pre-training
PretrainTransferMatrix-BP: the transfer matrices are unsupervised pertrained, and then
all the parameters are fine-tuned

Multi-stage: our multi-stage training strategy



Switchable Deep Network

<> Use mixture components to model complex variations of
body parts

<> Use salience maps to depress background clutters

<> Help detection with segmentation information

P. Luo, Y. Tian, X. Wang, and X. Tang, "Switchable Deep Network for Pedestrian Detection", CVPR 2014



Poselet: modeling mixture
components of body parts
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L. Bourdev and J. Malik, “Poselets: Body part detectors trained using 3d human pose annotations,” ICCV 2009



Switchable Deep Network for
Pedestrian Detection

Background clutter and large variations of pedestrian
appearance.

Proposed Solution. A Switchable Deep Network (SDN)
for learning the foreground map and removing the effect
background clutter.



Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

K

A
E(x,y,h,s,m;0) Zskh (Wi(xomy)+ by)— ZSACA (x omy) yTUZSkh;{_ —dy,
k=1 k=1

h
h U !

b S1 S, S3

/\w ' o0 ©®00e
c m4, W, 2 m3, W3

X
(a) RBM (b) Switchable RBM



Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

Background Foreground
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The projects started from December of 2012

DeeplID

Ping Luo

Zhenyao Zhu




We started the research on face
recognition since 2012

e X.Wang and X. Tang, “Unified Subspace Analysis for
Face Recognition,” ICCV 2013.

e X.Wang and X. Tang, “A Unified Framework for
Subspace Face Recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI),
Vol. 26, No.9, pp. 1222-1228, 2004.



Intra-personal variation

Inter-personal variation

How to separate the two types of variations?
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e Linear discriminant analysis (LDA) (PAMI’97)
e Bayesian face recognition (PR’00)
e Unified subspace analysis (PAMI'04)
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W™ =are 11{i}x|‘c“r"’ﬁg.ﬁ’| 5.2, |ﬁﬁﬁu.ﬁr| =1

LDA seeks for linear feature mapping which maximizes the distance
between class centers under the constraint what the intrapersonal
variation is constant

¥, = fix;l = Wiy,
f7 = argmax Z |Fi%ed = fiRgd)?
.*
Y

5.8, Z | fix;) — f':xj :]|2 =1

(et



Trainin;;mages b * mEigen:ualues‘ ‘
AR Intrapersonal subspace :;
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e Further do PCA on class centers after reducing
intrapersonal variation with whitening



1 1
U

)

i f A Al
i U !

atys

"\
<

e

p Nad

Eigenface: PCA on images to reduce

dimensionality and remove noise (when later
steps increase intrapersonal difference, some
noise could be magnified in wrong directions)

Bayesianface: PCA on intrapersonal difference

vectors to extract the patterns of intrapersonal
variations, and depress them by dividing

eigenvalues

Fisherface: PCA on class centers to make them as
far as possible and extract identity information

\/
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tations of Existing Appro
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e A lot of information has been lost when
calculating the difference A = X; — X,

b
- ’ _ j." -
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e Linear models with shallow structures cannot
separate intra- and inter-personal variations,
which are complex, nonlinear, and in high-
dimensional image space



Deep Learning Won ImageNet Image
Classification Challenge 2012

Motivated us to feed an image pair (I, , I,) to CNN and train a
powerful nonlinear classifier

PA]Qr)P(Qr) —

S, 1) = PAIQ)PQ) + P(AIQ) P()

CNN (I, 1,)



e IJ I Is 10" rdCe ne 5 I
e Extract identity preserving features through
hierarchical nonlinear mappings

e Model complex intra- and inter-personal
variations with large learning capacity



GoogleNet

Sigmoid Rectified linear unit

f(x) = tanh(x) f(x) = max(0, x)

e Linear transform

* Pooling

* Nonlinear mapping



Learn Identity Features from Different
Supervisory Tasks

e Face identification: classify an image into one
of N identity classes

— multi-class classification problem

* Face verification: verify whether a pair of
images belong to the same identity or not

— binary classification problem

P(A|Qr)P(82) —

SULT) = BRI P(Q) + PAIQ P(Op)

CNN (I, 1,)



Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance

between classes) N

y = f(x); g = softmax()

f* —algmm Z £ (i) — £

(i.j)efY;

<.t |g(f(x ))_gkf(x.f )| =1, label(x;) # label(xj)



Learn ldentity Features with

Verification Signal

Extract relational features with learned filter pairs

Yy =

(0 + kY k2t 4 Bk 2?)

These relational features are further processed through
multiple layers to extract global features

The fully connected layer can be used as features to combine
with multiple ConvNets

Convolutlonal
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Input layer
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layer 1
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e 10 face regions, 3 scales, color/gray and 8 modes
 Base on three-point alignment

39 x 31 31 x 39 31x39 31x31 31x3131x31

- o 1S
ﬂm, S8 &4

39x31 39x31 39 x 31 31x3131x31 31x31 m ﬁl # @
B “

modes

Regions and scales



RBM Combines Features Extracted by
Multiple ConvNets

RBM output layer/ —
face verification prediction

RBM hidden layer (0@ 09000 @)
i 3

High-level
relational [c o ac c o 200009
features - >

_ Feature extraction layer
Multiple = o -
ConvNets = ... P ,

_ | Feature extraction layer
L0|w_|eve|lv—t—w 3 ‘v s
relational ¥ 7N G ¢ Feature extraction layer | () ¥ W
features 2 ' —"1*.‘:—”7* ?
Face patch g™
pairs with

_ different
input modes
Filter pair Filter pair
Face pair in

comparison
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e Qutside training data: the CelebFaces dataset has 87,628 face
images of 5,436 celebrities. Its identities have no overlap with
LFW

hid hid+out out
dimension 38,400 38,880 480

each dim (%) 60.25 60.58 86.63
PCA+LDA (%) 94.55 94.42 93.41
SVM linear (%) | 95.12 95.04 93.45
SVM rbf (%) 94.95 94.89 94.00
classRBM (%) 95.56 95.32 93.79

Taking the last hidden layer (hid) as features for combination is more
effective than using the output of CNNs (out)
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* Fine tuning RBM and ConvNets improves the
performance

* Averaging 5 RBMs (each is trained with a randomly
generated training set) can improves performance

LEW (%) | CelebFaces (%)
Single ConvNet 85.05 88.46
RBM 93.45 95.56
Fine-tuning 93.58 96.60
Model averaging 93.83 97.08

LFW: only using training images from LFW with unrestricted protocol
CelebFaces: using CelebFaces as training set without training images from LFW
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e Unrestricted protocol using outside training data

Method Accuracy (%)
Joint Bayesian [12] 092.42 + 1.08
ConvNet-RBM previous [43] 92.52 + 0.38
Tom-vs-Pete (with attributes) [4] 093.30 £ 1.28

High-dim LBP [13]

95.17 £ 1.13

TL Joint Bayesian [10]

96.33 = 1.08

ConvNet-RBM

97.08 + 0.28

true positive rate

0.7

0.6

Joint Bayesian (WDRef) [12]
— ConvNet-RBM previous (CelebFaces) [43]

Tom-vs-Pete (with attributes) [4]
— High-dim LBP (WDRef) [13]

TL Joint Bayesian [10]
ConvNet-RBM (CelebFaces)
0.1 0.2 0.3

0.4
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Use the last hidden layer instead of the output of
CNNs as features

Fusion of features from more face regions (CNNs)
improves the performance

Fine tuning RBM and CNNs improves performance

» Averaging the outputs of multiple RBMs improves
the performance

Drawbacks: computational cost is high and features
cannot be computed offline



Features learned from a large number of classes
from ImageNet has good generalization capability

The key of deep learning is to learn feature
representations instead of classifiers

v

Can this idea be generalized to face recognition?




Our understanding of deep learning
— Deeply learned features can be well
generalized to other datasets and
recognition tasks
— The generalization power increases when
the supervision task is more challenging



Learn ldentity Features with
ldentification Signal

N

1,00 i_]
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Convolutional lai'.?r
layer 2 Convolutional Convolutional - 4
1 layer 3 layer4 160" |
X 4B TR
SO e ﬁ__: -t o "[h_ ) _5._-‘-‘;':'-"_5_5_ 2 :\,. ;
= 2/ A - . 1= A _:,:- =g ::-'«.___Bu-" ‘:1;:5:‘ 2l
40 60 .. el o |/
207 60 MaxoO oling o
20 .40 Max-poolin A Telal
1 Max-pooling I3 per 5 & layer 3 et J L
Input layer layer 1 ¥ Deaao hidden
identity g
features n
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During training, each image is classified into 10,000
identities with 160 identity features in the top layer

These features keep rich inter-personal variations

Features from the last two convolutional layers are

effective

The hidden identity features can be well generalized
to other tasks (e.g. verification) and identities

outside the training set

Convolutional Sl:}lgt—n':_ax

layer 1 Convolutional ye
layer 2 Convolutional Convolutional [

1 layer 3 layer 4 1@9 !

B 4: e ﬁ:: -k T2 m:i"‘::‘:f-u_ 2 - .-;1'.
e MR |4 zﬁ[ b |48 N s

40 B0 . e 9
20 80 a0 ) 60 Max-pooling .
1 20 Max-pooling alzvpeﬁﬂz'”g layer 3

Input layer layer 1 Deaﬂa h|d7den-
entity - :
features n

(DeeplD)



 High-dimensional prediction is more challenging, but
also adds stronger supervision to the network

* As adding the number of classes to be predicted, the
generalization power of the learned features also

iImproves

Convolutional Sl:}lft—n':_ax
layer 1 Convolutional aye
layer 2 Convolutional Convolutional [
/ 1 layer 3 layer 4 16‘9 r‘
s YRR A A )R
4{] ED 60 --_-"'u,_h-‘-"n_\_ --h: 'III‘-._‘ )
350 a0 40 Max-pooling .- |1 ©
1 Max-pooling Malz- pe':;'j;!mg layer 3 '
Input layer layer 1 Y DEEJJ h|dder1
entity - :
features n

(DeeplD)



Extract Features from Multiple ConvNets

Multiple ConvNets

n~10000 n =~ 10000
OO -+ OO Identityclasses QO -« -+ OO
Deep hidden % ‘l‘ _______ .
identity features | O . O 160 oo |O. .. O] 160
(DeeplD)  S—oge===rggr-—------=----=mm=mmm-mm--—----SegemT ‘
Feature extractin
0@ -0 e Q- - O]F

Feat tracti
24{]‘0 . O ea url'g?ee:r; 5;3(: Ing lo . e O|3E'U

1440 OO OO| Featurgveeﬁtgactmaoo OO] 1920
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1§

Q

feature extract II"I
3920 @0 - e — @0)5040

i

' O
Face patches E .




Learn ldentity Features with
ldentification Signal

e After combining hidden identity features from
multiple CovNets and further reducing
dimensionality with PCA, each face image has 150-
dimenional features as signature

e These features can be further processed by other
classifiers in face verification. Interestingly, we find
Joint Bayesian is more effective than cascading
another neural network to classify these features
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 We enlarge CelebFaces dataset to CelebFaces+, which include
202,599 images of 10,117 celebrities. CelebFaces+ has no
overlap with LFW on identities

Method Accuracy (%) | No. of points | No. of images Feature dimension
Joint Bayesian [¥] 92.42 (o) S5 99,773 2000 x 4
ConvNet-RBM [ 1] 92.52 (o) 3 87,628 N/A
CMD+SLBP [17] 92.58 (u) 3 N/A 2302
Fisher vector faces [2Y] 93.03 (u) 9 N/A 128 x 2
Tom-vs-Pete classifiers [] 93.30 (o+r) 95 20,639 5000
High-dim LBP [Y] 95.17 (o) 27 99,773 2000

TL Joint Bayesian [0] 96.33 (0+u) 27 99,773 2000
DeepFace [3”] 97.25 (o+u) 6+ 67 4,400,000 + 3,000,000 | 4096 x 4
DeepID on CelebFaces 96.05 (o) 5 87,628 150
DeepID on CelebFaces+ 97.05 (o) 5 202,599 150
DeeplD on CelebFaces+ with transfer | 97.45 (o+u) 5 202,599 150

“0” denotes using outside training data, however, without using training data from LFW

“o+u” denotes using outside training data and LFW data in the unrestricted protocol for

training
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e Every two feature vectors extracted from the same
identity should are close to each other

31 = 515 if g = 1
Verif(fiff'ayi':eve) — 2 1t 112 9 tJ
T smax (0,m — || fi — fjll,)" ifyy =—1

f;and f; are feature vectors extracted from two face images in comparison

y; = 1 means they are from the same identity; y; = -1means different identities

m is a margin to be learned



Balancing Identification and
Verification Signhals with Parameter A
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A = 0: only identification signal
A = +oo: only verification signal



Rich Identity Information Improves

Feature Learning

e Face verification accuracies with the number of
training identities
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e 25 face regions at different scales and locations
around landmarks are selected to build 25 neural
networks

e Allthe 160 X 25 hidden identity features are further
compressed into a 180-dimensional feature vector
with PCA as a signature for each image

 With a single Titan GPU, the feature extraction
process takes 35ms per image



e Larger net work
structures

e Larger training data

e Adding supervisory
signals at every layer
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Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust.

arXiv:1412.1265, 2014.



Compare DeeplD2 and DeeplD2+ on LFW

|
[LTTEL T | e—
|
‘ BDeeplD2+
|
|
|

5 10 15 20 25
net ID

Comparison of face verification accuracies on LFW with ConvNets trained on 25 face
regions given in DeeplD2

Best single model is improved from 96.72% to 98.70%
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High-dim | TL Joint DeepFace | DeeplD | DeepiD2 DeepID2+
LBP [1] Bayesian [2] | [3] [4] [5]
Accuracy (%) 95.17 96.33 97.35 97.45 99.15 99.47

[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level
performance in face verification. CVPR, 2014.

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000
classes. CVPR, 2014.

[5] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
|dentification-Verification. NIPS, 2014.

[6] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse,
selective, and robust. arXiv:1412.1265, 2014.



Closed- and open-set face
identification on LFW

Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25
COST-S1+s2 [1] 66.5 35
DeepFace [2] 64.9 44.5
DeepFace+ [3] 82.5 61.9
DeeplD2 91.1 61.6
DeeplD2+ 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.
Technical report, arXiv:1406.5266, 2014.



Car~rn \/nrifiratinn Ann VAariTiithha CAarAac
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Wethods | Accuracy 06
LM3L [1] 81.3+1.2
DDML (LBP) [2] 81.3+1.6
DDML (combined) [2] 82.3 +1.5
EigenPEP [3] 84.8 £+1.4
DeepFace [4] 914 +1.1
DeeplD2+ 93.2 £0.2

[1]J. Huy, J. Lu, J. Yuan, and Y. P. Tan, “Large margin multi-metric learning for face and
kinship verification in the wild,” ACCV 2014

[2] ). Hy, J. Lu, and Y. P. Tan, “Discriminative deep metric learning for face verification in
the wild,” CVPR 2014

[3] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, “Eigen-pep for video face recognition,”
ACCV 2014

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to human-
level performance in face verification,” CVPR 2014.



Unified subspace analysis

* Identification signal isin S;
verification signal isin S,

* Maximize distance between

classes under constraint
that intrapersonal variation
Is constant

e Linear feature mapping

Joint deep learning

Learn features by joint
identification-verification

Minimize intra-personal
variation under constraint
that the distance between
classes is constant

Hierarchical nonlinear
feature extraction

il UIIaaUulLIWIE I VWV 1 IHivi CuUJvw.Jd

(‘nnnr::aln::hnn pn\/\lnr iNcreases

with more training identities

 Need to be careful when magnifying the inter-personal difference;
Unsupervised learning many be a good choice to remove noise

We still do not know limit of deep learning yet
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Neural mechanisms for face processing
Professor Doris Tsao, California Institute of Technology (Caltech)

How the brain distills a representation of meaningful objects from retinal input
is one of the central challenges of systems neuroscience. Functional imaging
experiments in the macaque reveal that one ecologically important class of
objects, faces, is represented by a system of six discrete, strongly
interconnected regions. Electrophysiological recordings show that these face
patches’ have unique functional profiles. By studying the distinct visual
representations maintained in these six face patches, the sequence of
information flow between them, and the role each plays in face perception, we
are gaining new insights into hierarchical information processing in the brain.




What has been learned by DeeplD2+?

Properties owned by neurons?

Moderate sparse

Selective to identities and attributes

Robust to data corruption

These properties are naturally owned by DeeplD2+ through large-scale training,
without explicitly adding regularization terms to the model



O
0,
O
Q)

DA
DIV

Dorsal

tb Ant.

e Monkey has a face-processing network that is made of six
interconnected face-selective regions

 Neurons in some of these regions were view-specific, while
some others were tuned to identity across views

 View could be generalized to other factors, e.g. expressions?

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization
within the macaque face-processing system,” Science, 330(6005):845—-851, 2010.



Deeply learned features are moderately space

 For aninput image, about half of the neurons are activated

 An neuron has response on about half of the images
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Deeply learned features are moderately space

The binary codes on activation patterns of neurons are very
effective on face recognition

Activation patterns are more important than activation
magnitudes in face recognition

_ Joint Bayesian (%) | Hamming distance (%)

Single model 98.70 n/a
(real values)

Single model 97.67 96.46
(binary code)

Combined model 99.47 n/a
(real values)

Combined model 99.12 97.47
(binary code)



Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute
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Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1
%) >,
© Q
3 0.8
S0.8 g
g IDgepIII_)2+ @ EDeeplD2+
S gHigh-dim 5086 gHigh-dim
So6 L5P S LBP
2 0.4
© ©
Q [&]
0.4 0.2 : | :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.



Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons
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Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons
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Histograms of neural activations over gender-related attributes (Male and Female)
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Brown Hair.
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Deeply learned features are selective to
identities and attributes

* Visualize the semantic meaning of each neuron

High Resp. <@==fp Low Resp. HighResp. <= TLow Resp.

Gender Hair Color

Face Shape Eye Shape




Deeply learned features are selective to
identities and attributes

e Visualize the semantic meaning of each neuron

Test Image Activations Neurons

Neurons are ranked by their responses in descending order with respect to test images



verification accuracy

Deeply learned features are robust to occlusions

Global features are more robust to occlusions
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Can features learned by DeeplD be effectively applied
to other face related tasks, such as face localization and
face attribute recognition?

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild”,
arXiv: 1411.7766, 2014



DeeplD2 features for attribute recognition

Features at top layers are more effective on recognizing
identity related attributes

Features at lowers layers are more effective on identity-non-
related attributes

M FNet (FC) M FNet(C4) M FNet(C3)

Identity-related Attributes Identity-non-related Aftributes

95% 91%

590% 87%

3 85% I 83% I I|

< 80% I II 79% I I
75% 75%

Male Young Senior Asian Wearing Black  Pomnty Mastache
Hat Hair Nose



DeeplD2 features for attribute recognition

e DeeplD2 features can be directly used for attribute recognition

e Use DeelD2 features as initialization (pre-trained result), and
then fine tune on attribute recognition

e Average accuracy on 40 attributes on CelebA and LFWA datasets

FaceTracer [1] (HOG+SVM) 81 74
PANDA-W [2] 79 71
(Parts are automatically detected)

PANDA-L [2] 85 81
(Parts are given by ground truth)

DeeplD2 84 82
Fine-tune (w/o DeeplD2) 83 79
DeeplID2 + fine-tune 87 84

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” arXiv:1411.7766, 2014.



Features learned by DeeplD and attribute
recognition are effective on face localization

E Wavy Hair

H Linear No Beard
E-—b ©) 1 1i 90 =pHigh Cheekbones
B (SVM) Smiling
“h

a
(d) Training classifiers to predict attributes

Lnets are pre-trained with ImageNet ANet is pre-trained with DeeplD
Both are fine-trained with face attributes
Lnet, calculates a response map which indicates the region of head-shoulder

Lnet, refines the location of face
Anet extracts features to recognize attributes



Arched Eyebrows Receding Hairline Smiling Mustache Young

!I t
= o e 4

(a) HOG (landmarks)+SVM

(b) Our Method

pointy nose
rosy cheek
smiling

(a) single detector (b) multi-view detector (c) face localization by attributes

Each neuron learned from face attribute recognition servers as a face detector, and it
extends the idea of multi-view face detector to an extreme case



(a)

LNet with LNet without ®)
Pre-training Pre-training
= DPM [16] SURF Cascade [14]
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Test Image
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Pre-training
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Pre-training
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Our understanding of deep learning
— Deep models can disentangle hidden factors with
different neurons
— Deep models can be a combination of random and
determinant neurons
— Image reconstruction is a stronger supervision
task and can be used to learn features



Example 2: deep learning face identity features
by recovering canonical-view face images

d’j bo} L
BELRE
’5]‘!].
gl > .uﬂi b

Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



e Deep model can disentangle hidden factors through feature

extraction over mulhnln |::\n:\rc
/ALl UG LIWVI | \J VL] rl y\-ld

* No 3D model; no prior information on pose and lighting condition
e Model multiple complex transforms

e Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label and helps to avoid overfitting

Feature Extraction Layers Reconstruction Layer
=48 X 48 X 32

FIP
n,=24X24X32 n;=24X24X32

n,=96 X 96 n,=96 X 96

4
W
5X5 Locally | 5X5 Locally 5X5 Locally M Fully
Connected and | Connected and Connected g Connected Y

Pooling Pooling

Arbitrary view Canonical view
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Comparlson on Muiti-PIE

LGBP [26] 37.7 62.5 59.2 36.1 593 V
VAAM [17] 74.1 91 95.7 95.7 895 748 869 V
FA-EGFCI[3] 84.7 95 99.3 99 929 85.2 92.7

SA-EGFCJ[3] 93 98.7 99.7 99.7 983 936 972 V¥

LE[4] + LDA 869 955 999 99.7 955 818 93.2 X
CRBM[9] + LDA 80.3 90.5 949 964 883 898 876 «x

Ours 95.6 98.5 100.0 99.3 985 978 983 «x
[3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully [17] S.Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement
automatic pose-invariant face recognition via 3d pose normalization. In ICCV, field based image Tawhlﬂg for face recognition across pose. In ECCV, pages
pages 937-944,2011. 1,5,6 102-115.2012. 1,2,5,6

[4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based [26] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local gabor binary

descriptor. In CVPR, pages 2707-2714, 2010. 2, 3,6 pattern histogram sequence (lgbphs): A novel non-statistical model for face
’ ’ T representation and recognition. In ICCV, volume 1, pages 786791, 2005. 5, 6

[9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical represen-
tations for face verification with convolutional deep belief networks. In CVPR,
pages 2518-2525,2012. 3,6
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y1(0°) Yy, (4 50) y3(90°)
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Hidden Layer n (‘ ‘ ‘)
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T A multi-task solution:
(‘ ’ ‘) discretize the view spectrum

Input Image (‘ - ‘)

1. The number of views to be reconstructed is predefined, equivalent to the number of tasks

2. Model complexity increases as the number of views
3. Encounters problems when the training data of different views are unbalanced
4. Cannot reconstruct views not presented in the training set



Deep Learning Multi-view
Representation from 2D Images

e |dentity and view represented by different sets of neurons
* Continuous view representation

e Given an image under arbitrary view, its viewpoint can be
estimated and its full spectrum of views can be reconstructed

- DL 0L R e D I

~ B R
— e i

Z. Zhu, P. Luo, X. Wang and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,”
NIPS 2014.



Deep Learning Multi-view
Representation from 2D Images

x and y are input and ouput images of
the same identity but in different views;

v is the view label of the output image;

h'd are neurons encoding identity
features

h'are neurons encoding view features

h"are neurons encoding features to
X reconstruct the output images
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e EM updates on the probabilistic model are converted
to forward and backward propagation

L(O, @DM} — Z p(h"|y, v; E}G'!'i) log p(y.v,h" hid; )
hv

o E-step: proposes s samples of h
hY ~U(0,1)
ws = p(y,v|h?; %)
« M-step: compute gradient refer to h with largest w,
0L(O)
00 90

9 {w,(logp(v Iy, h?) + log p(y[h, h?)) }



Ave. | 0°  —15° +15° —30° +30° —45° +45° —60° +60°
Raw Pixels+LDA 367 | 813 592 583 355 373 210 197 128 7.63
LBP [1]+LDA 502 | 89.1 774 791 568 559 352 297 162 146
Landmark LBP [6]+LDA | 632 | 949 839 89 714 682 528 483 355 32.1
CNN+LDA 58.1 | 646 662 628 607 63.6 564 579 464 442
FIP [28]+LDA 729 | 943 914 900 789 825 66.1 620 493 425
RL [28]+LDA 708 | 943 905 898 775 80.0 636 59.5 446 389
MTL+RL+LDA 748 | 938 917 89.6 80.1 833 704 638 515 502
MVP,_, 4+LDA 615 | 925 854 849 643 670 51.6 454 351 283
1
MVP,_,4+LDA 793 | 957 933 922 834 839 752 706 602 60.0
2
MVPy+LDA 726 | 91.0 867 841 746 742 685 638 557  56.0
MVPy, - +LDA 623 | 834 773 731 620 639 573 532 444 469

Face recognition accuracies across views and illuminations on the Multi-PIE
dataset. The first and the second best performances are in bold.

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face

recognition. TPAMI, 28:2037-2041, 2006.

[6] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional feature

and its efficient compression for face verification. In CVPR, 2013.

[28] Z.Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity preserving face space. In ICCV, 2013.




Deep Learning Multi-view
Representation from 2D Images

e Interpolate and predict images under viewpoints unobserved
in the training set

Tl v v e ey vl - o
v 7% Cn &g vy ey o x| Crlely e g
T 5 o s AR Ty e

(b)
The training set onIy has viewpoints of 0°, 30°, and 60°. (a): the reconstructed
images under 15° and 45° when the input is taken under 0°. (b) The input images
are under 15° and 45°.
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Apply deep learning to new applications

Bridge the connection between conventional pattern
recognition systems and deep models, and get ideas
from domain applications to propose new deep
models and training strategies

Understand why deep learning works, get insights
and generalize those insights — have your own
philosophy on deep learning

Many neural networks were proposed in 1980s and
1990s and they can be revisited
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 Many machine learning models were motivated by
computer vision applications. However, computer
vision did not have close interaction with neural

networks in the past 15 years. We expect fast
development of deep learning driven by applications.

 The most successful deep model in computer vision
is CNN. The two most important operations in CNN,
i.e. filtering and pooling, were also widely used in
vision systems. We expect other effective domain
knowledge, such more advanced pooling operations
which are also robust to rotation and scaling, can be
incoporated into deep models.
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e Study the properties of neurons, which may
provide the directions of theoretical studies
on deep learning. Study the difference and
similarity between the mechanisms of neural
networks and human brains



