
cuhk

Distributed representation and disentangling underlying factors
Better mixing via deep representations

Understand Deep Learning

Xiaogang Wang

xgwang@ee.cuhk.edu.hk

March 29, 2015

Xiaogang Wang Understand Deep Learning



cuhk

Distributed representation and disentangling underlying factors
Better mixing via deep representations

Outline

1 Distributed representation and disentangling underlying factors

2 Better mixing via deep representations

Xiaogang Wang Understand Deep Learning



cuhk

Distributed representation and disentangling underlying factors
Better mixing via deep representations

What is a good representation?

Makes the further learning easier

The joint distribution of different elements of the representation h
is easy to model (e.g. they are mutually independent)
The representation keeps the information (or at least all the
relevant information in the supervised case) and makes it easy to
learn functions of interest from this representation

An ideal representation is one that disentangles the underlying causal
factors of variation that generated the observed data

Once we “understand” the underlying explanations for what we observe,
it generally becomes easy to predict one thing from others
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When does unsupervised learning help supervised learning?

Whether unsupervised learning on input variables x can yield
representations that are useful when later trying to learn to predict
some target variable y, given x

Whether P(y|x) seen as a function of has anything x to do with P(x)

If P(x) is uniformly distributed and E [y|x] is some function of
interest, observing x alone gives us no information about P(y|x)
If x arises from a mixture, with one component per value of y, and
the mixture components are well separated, then modeling P(x)
tells us precisely where each component is, and a single single
labeled example of each component will then be enough to
perfectly learn P(y|x).

If y is closely associated with one of the causal factors of x, P(x) and
P(y|x) will be strongly tied, and unsupervised representation learning
that tries to disentangle the underlying factors of variation is likely to be
useful as a semi-supervised learning strategy.
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Disentangle the underlying factors of variation

Assuming that y is one of the causal factors of x, and let h represent all those
factors, then the data has marginal probability

P(x) =
∫

h
P(x|h)p(h)dh

or, in the discrete case
P(x) =

∑
h

P(x|h)P(h)

The best possible model x is the one that uncovers the above “true” structures,
with h as a latent variable that explains the observed variations in x
The “ideal” representation learned should recover these latent factors

If y is one of them (or closely related to one of them), then it will be very easy to
learn to predict y from such a representation

Not knowing which of the factors in h will be the one of the interest, say y = hi ,
an unsupervised learning should learn a representation that disentangles all the
generative factors hi from each other, then making it easy to predict y from h.
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Why is generative model more robust to discriminative model?

Assuming x is an effect and y is a cause, the generative model learns
P(x|y) and estimate P(y|x) with the Bayes rule

P(y|x) = P(x|y)P(y)
P(x)

The discriminative model directly learns P(y|x)
P(x|y) is more robust to changes in P(y). To different domains, the
causal mechanisms remain invariant (“the laws of the universe are
constant”) whereas what changes are the marginal distribution over the
underlying causes (or what factors are linked to our particular task).

If the cause-effect relationship was reversed, it would not be true, since
by Bayes rule, P(y|x) would be sensitive to changes in P(x).

Hence, better generalization and robustness to all kinds of changes can
be expected via learning a generative model that attempts to recover
the causal factors h and P(x|h)
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Distributed representation

The core assumption behind most neural network and deep learning
research relies on the notion of distributed representation
A distributed representation can express an exponentially large number
of concepts by allowing to compose the activation of many features
An example of distributed representation is a vector of n binary features,
which can take 2n configurations, each potentially corresponding to a
different region in input space
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Distributed representation

The way these regions carve the input space still depends on few
parameters: this huge number of regions are not placed independently
of each other

We can thus represent a function that looks complicated but actually
has structure

The assumption is that one can learn about each feature without having
to see the examples for all the configurations of all the other features,
i.e., these features correspond to underlying factors explaining the data
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Non-distributed representation

Example of symbolic representation: the input is associated with a
single symbol or category; only n different configurations of the
representation-space are possible, carving n different regions in input
space. Such a symbolic representation is also called a one-hot
representation, since it can be captured by a binary vector with n bits
that are mutually exclusive (only one of them can be active)
It breaks up the input space into regions, with a separate set of
parameters for each region

Xiaogang Wang Understand Deep Learning



cuhk

Distributed representation and disentangling underlying factors
Better mixing via deep representations

Examples

Clustering methods, including the k-means algorithm: only one cluster
“wins” the competition

K-nearest neighbors algorithms: only one template or prototype
example is associated with a given input

Decision trees: only one leaf (and the nodes on the path from root to
leaf ) is activated when an input is given

Gaussian mixtures and mixtures of experts: the templates (cluster
centers) or experts are now associated with a degree of activation

Kernel machines with a Gaussian kernel (or other similarly local kernel):
the degree of activation of each “support vector” or template example is
continuous-valued

Disadvantages: there is no generalization to new regions, except by
extending the answer for which there is data, exploiting solely a
smoothness prior; it makes it difficult to learn a complicated function,
with more ups and downs than the available number of examples.
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Distributed representation leads to better generalization

Generalization arises due to shared attributes between different
concepts

As pure symbols, “cat” and “dog” are as far from each other as any
other two symbols. However, if one associates them with a meaningful
distributed representation, then many of the things that can be said
about cats can generalize to dogs and vice versa.

Distributed representations induce a rich similarity space, in which
semantically close concepts (or inputs) are close in distance, a property
that is absent from purely symbolic representations
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Exponential gain in representational efficiency from distributed representations

A function that “looks complicated” can be compactly represented using
a small number of parameters, if some “structure” is uncovered by the
learner

Traditional “non-distributed” learning algorithms generalize only thanks
to the smoothness assumption, which states that if u ≈ v , then the
target function f to be learned has the property that f (u) ≈ f (v), in
general.

This assumption suffers from the curse of dimensionality: in order to
learn a target function that takes many different values (e.g. many ups
and downs) in a large number of regions, we may need a number of
examples that is at least as large as the number of distinguishable
regions.

e.g., exponentially many regions: in a d-dimensional space with at
least 2 different values to distinguish per dimension, we might
want f to differ in 2d different regions, requiring O(2d) training
examples

Xiaogang Wang Understand Deep Learning



cuhk

Distributed representation and disentangling underlying factors
Better mixing via deep representations

Exponential gain in representational efficiency from distributed representations

One can think of each of these regions as a category or symbol: by
having a separate degree of freedom for each symbol (or region), we
can learn an arbitrary mapping from symbol to value. However, this
does not allow us to generalize to new symbols, new regions.

If we are lucky, there may be some regularity in the target function,
besides being smooth. For example, the same pattern of variation may
repeat itself many times (e.g., as in a periodic function or a
checkerboard). If we only use the smoothness prior, we will need
additional examples for each repetition of that pattern

A deep architecture could represent and discover such a repetition
pattern and generalize to new instances of it. Thus a small number of
parameters (and therefore, a small number of examples) could suffice
to represent a function that looks complicated (in the sense that it would
be expensive to represent with a non-distributed architecture).
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Exponential gain in representational efficiency from distributed representations

How many regions are generated by an arrangement of n hyperplanes
in Rd ?

This corresponds to the number of regions that a shallow neural
network (one hidden layer) can distinguish

Therefore, we see a growth that is exponential in the input size and
polynomial in the number of hidden units

Distributed representation has better generalization because we can
learn about the location of each hyperplane with only O(d) examples:
we do not need to see examples corresponding to all O(nd ) regions
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Exponential gain in representational efficiency from distributed representations

It is hard to detect factors such as gender, age, and the presence of
glasses with a liner classifiers, i.e. a shallow neural network

The kinds of factors that can be chosen almost independently in order
to generate data are more likely to be very high-level and related in
highly non-linear ways to the input

This demands deep distributed representations, where the higher level
features (seen as functions of the input) or factors (seen as generative
causes) are obtained through the composition of many non-linearities
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Exponential gain in representational efficiency from distributed representations

Organizing computation through the composition of many nonlinearities
and a hierarchy of re-used features can give another exponential boost
to statistical efficiency

Although 2-layer networks (e.g., with saturating non-linearities, boolean
gates, sum/products, or RBF units) can generally be shown to be
universal approximators , the required number of hidden units may be
very large

The main results on the expressive power of deep architectures state
that there are families of functions that can be represented efficiently
with a deep architecture (say depth k ) but would require an exponential
number of components (with respect to the input size) with insufficient
depth (depth 2 or depth k − 1)
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Example of sum-product network
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Example of sum-product network

More recently, Delalleau and Bengio (2011) showed that a shallow
network requires exponentially many more sum-product hidden units
than a deep sum-product network (Poon and Domingos, 2011) in order
to compute certain families of polynomials.
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Example of deep rectifier networks
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Example of deep rectifier networks

(Pascanu et al., 2014b; Montufar et al., 2014) showed that piecewise linear
networks (e.g. obtained from rectifier non-linearities or maxout units) could
represent functions with exponentially more piecewise-linear regions, as a
function of depth, compared to shallow neural networks.

Figure illustrates how a network with absolute value rectification creates mirror
images of the function computed on top of some hidden unit, with respect to the
input of that hidden unit. Each hidden unit specifies where to fold the input space
in order to create mirror responses (on both sides of the absolute value
non-linearity). By composing these folding operations, we obtain an
exponentially large number of piecewise linear regions which can capture all
kinds of regular (e.g. repeating) patterns.

The main theorem in Montufar et al. (2014) states that the number of linear
regions carved out by a deep rectifier network with d inputs, depth L, and n units
per hidden layer, is
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Priors regarding the underlying factors

No-free-lunch theorem for machine learning: with absolutely no priors, it
is not possible to generalize
In the space of all functions, which is huge, with any finite training set,
there is no general purpose learning recipe that would dominate all
other learning algorithms. Whereas some assumptions are required,
when our goal is to build AI or understand human intelligence, it is
tempting to focus our attention on the most general and broad priors,
that are relevant for most of the tasks that humans are able to
successfully learn.
Smoothness: we want to learn functions f s.t. x ≈ y generally implies
f (x) ≈ f (y). This is the most basic prior and is present in most machine
learning, but is insufficient to get around the curse of dimensionality, as
discussed previously
Multiple explanatory factors: the data generating distribution is
generated by different underlying factors, and for the most part what
one learns about one factor generalizes in many configurations of the
other factors. This assumption is behind the idea of distributed
representations
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Priors regarding the underlying factors

Depth, or a hierarchical organization of explanatory factors: the concepts
that are useful at describing the world around us can be defined in terms of other
concepts, in a hierarchy, with more abstract concepts higher in the hierarchy,
being defined in terms of less abstract ones. This is the assumption exploited by
having deep representations
Causal factors: the input variables x are consequences, effects, while the
explanatory factors are causes, and not vice-versa. As discussed above, this
enables the semi-supervised learning assumption, i.e., that P(x) is tied to
P(y|x), making it possible to improve the learning of P(y|x) via the learning of
P(x). More precisely, this entails that representations that are useful for P(x) are
useful when learning P(y|x), allowing sharing of statistical strength between the
unsupervised and supervised learning tasks.

Shared factors across tasks: in the context where we have many tasks,
corresponding to different y′

i s sharing the same input x or where each task is
associated with a subset or a function fi (x) of a global input x, the assumption is
that each yi is associated with a different subset from a common pool of relevant
factors h. Because these subsets overlap, learning all the P(yi |x) via a shared
intermediate representation P(h|x) allows sharing of statistical strength between
the tasks.
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Priors regarding the underlying factors

Manifolds: probability mass concentrates, and the regions in which it
concentrates are locally connected and occupy a tiny volume. In the continuous
case, these regions can be approximated by low-dimensional manifolds that a
much smaller dimensionality than the original space where the data lives. This
manifold hypothesis is related to auto-encoders.

Natural clustering: different values of categorical variables such as object
classes are associated with separate manifolds. More precisely, the local
variations on the manifold tend to preserve the value of a category, and a linear
interpolation between examples of different classes in general involves going
through a low density region, i.e., P(x|y = i) for different i tend to be well
separated and not overlap much. This hypothesis is consistent with the idea that
humans have named categories and classes because of such statistical
structure (discovered by their brain and propagated by their culture), and
machine learning tasks often involves predicting such categorical variables.
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Priors regarding the underlying factors

Temporal and spatial coherence: consecutive or spatially nearby observations
tend to be associated with the same value of relevant categorical concepts, or
result in a small move on the surface of the high-density manifold. More
generally, different factors change at different temporal and spatial scales, and
many categorical concepts of interest change slowly. When attempting to
capture such categorical variables, this prior can be enforced by making the
associated representations slowly changing, i.e., penalizing changes in values
over time or space.

Sparsity: for any given observation x , only a small fraction of the possible
factors are relevant. In terms of representation, this could be represented by
features that are often zero, or by the fact that most of the extracted features are
insensitive to small variations of x . This can be achieved with certain forms of
priors on latent variables, or by using a non-linearity whose value is often flat at 0
(i.e., 0 and with a 0 derivative), or simply by penalizing the magnitude of the
Jacobian matrix (of derivatives) of the function mapping input to representation.
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Priors regarding the underlying factors

Simplicity of Factor Dependencies: in good high-level representations, the
factors are related to each other through simple dependencies. The simplest
possible is marginal independence, P(h) =

∏
i P(hi ), but linear dependencies

are also reasonable assumptions. This can be seen in many laws of physics, and
is assumed when plugging a linear predictor or a factorized prior on top of a
learned representation.
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Better mixing via deep representations

Why and to what extent different deep learning algorithms may help
disentangle underlying factors?

Better representations can be exploited to produce Markov chains that
mix faster between modes

Mixing between modes would be more efficient at higher levels of
representation

The higher-level samples fill more uniformly the space they occupy and
the high-density manifolds tend to unfold when represented at higher
levels
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Challenge of sampling with MCMC

Unsupervised learned deep models can be used generate samples

In general the associated sampling algorithms involve a Markov Chain and
MCMC techniques, and these can suffer from a fundamental problem of mixing
between modes: it is difficult for the Markov chain to jump from one mode of the
distribution to another, when these are separated by large low-density regions, a
common situation in real-world data, and under the manifold hypothesis

This hypothesis states that natural classes present in the data are associated
with low-dimensional regions in input space (manifolds) near which the
distribution concentrates, and that different class manifolds are well-separated by
regions of very low density

Slow mixing between modes means that consecutive samples tend to be
correlated (belong to the same mode) and that it takes many consecutive
sampling steps to go from one mode to another and even more to cover all of
them, i.e., to obtain a large enough representative set of samples (e.g. to
compute an expected value under the target distribution).

This happens because these jumps through the empty low-density void between
modes are unlikely and rare events.
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Challenge of sampling with MCMC

When a learner has a poor model of the data, e.g., in the initial stages of
learning, the model tends to correspond to a smoother and higher- entropy
(closer to uniform) distribution, putting mass in larger volumes of input space,
and in particular, between the modes (or manifolds).
Keep in mind that MCMCs tend to make moves to nearby probable
configurations. Mixing between modes is therefore initially easy for such poor
models.
However, as the model improves and its corresponding distribution sharpens
near where the data concentrate, mixing between modes becomes considerably
slower. Making one unlikely move (i.e., to a low-probability configuration) may be
possible, but making N such moves becomes exponentially unlikely in N

Top: early during training, MCMC mixes easily between modes because the estimated distribution has high entropy
and puts enough mass everywhere for small-steps movements (MCMC) to go from mode to mode. Bottom: later on,
training relying on good mixing can stall because estimated modes are separated by vast low-density deserts.
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Challenge of sampling with MCMC

Since sampling is an integral part of many learning algorithms (e.g., to estimate
the log-likelihood gradient), slower mixing between modes then means slower or
poorer learning, and one may even suspect that learning stalls at some point
because of the limitations of the sampling algorithm.

Bengio et al. showed that mixing between modes is easier when sampling at the
higher levels of representation

Deeper generative models produce not only better features for classification but
also better quality samples (in the sense of better corresponding to the target
distribution being learned)
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Hypothesis H1

Depth vs Better Mixing Between Modes: A successfully trained deeper
architecture has the potential to yield representation spaces in which Markov
chains mix faster between modes.

If experiments validate that hypothesis, the most im- portant next question is:
why?

Sequences of 25 samples generated with a Contractive Auto-Encoder (CAE) on TFD (rows 1 and 2, respectively for
1 or 2 hidden layers) and with an RBM on MNIST (rows 3 and 4, respectively for 1 or 2 hidden layers). On TFD, the
second layer clearly allows to get quickly from woman samples (left) to man samples (right) passing by various facial
expressions whereas the single hidden layer model shows poor samples. Bottom rows: On MNIST, the single-layer
model gets stuck near the same mode while the second layer allows to mix among classes.
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Hypothesis H2

Depth vs Disentangling: Part of the explanation of H1 is that deeper
representations can better disentangle the underlying factors of variation

Imagine an abstract (high-level) representation for object image data in which
one of the factors is the “reverse video bit”, which inverts black and white, e.g.,
flipping that bit replaces intensity x ∈ [0, 1] by 1− x . With the default value of 0,
the foreground object is dark and the background is light. Clearly, flipping that bit
does not change most of the other semantic characteristics of the image, which
could be represented in other high-level features.

However, for every image-level mode, there would be a reverse-video
counterpart mode in which that bit is flipped: these two modes would be
separated by vast “empty” (low density) regions in input space, making it very
unlikely for any Markov chain in input space (e.g. Gibbs sampling in an RBM) to
jump from one of these two modes to another, because that would require most
of the input pixels or hidden units of the RBM to simultaneously flip their value.

Instead, if we consider the high-level representation which has a “reverse video”
bit, flipping only that bit would be a very likely event under most Markov chain
transition probabilities, since that flip would be a small change preserving high
probability.
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Hypothesis H2

As another example, imagine that some of the bits of the high-level
representation identify the category of the object in the image, independently of
pose, illumination, background, etc. Then simply flipping one of these object-
class bits would also drastically change the raw pixel-space image, while keeping
likelihood high. Jumping from an object-class mode to another would therefore
be easy with a Markov chain in representation-space, whereas it would be much
less likely in raw pixel-space.

Disentangling cannot be perfect in deep learning. Better disentangling would
mean that some of the learned features have a higher mutual information with
some of the known factors. One would expect at the same time that the features
that are highly predictive of one factor be less so of other factors, i.e., that they
specialize to one or a few of the factors, becoming invariant to others.
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Hypothesis H3

Disentangling Unfolds and Expands. Part of the explanation of H2 is that
more disentangled representations tend to

(a) unfold the manifolds near which raw data concentrates, as well as
(b) expand the relative volume occupied by high-probability points near
these manifolds

H3(a) says is that disentangling has the effect that the projection of high-density
manifolds in the high-level representation space have a smoother density and
are easier to model than the corresponding high-density manifolds in raw input
space.
Let us again use an object recognition analogy. If we have perfectly dis-
entangled object identity, pose and illumination, the high-density manifold
associated with the distribution of features in high-level representation-space is
at: we can interpolate between some training examples (i.e. likely configurations)
and yet stay in a high-probability region.
For example, we can imagine that interpolating between two images of the same
object at different poses (lighting, position, etc.) in a high-level
representation-space would yield images of the object at intermediate poses
(i.e., corresponding to likely natural images), whereas interpolating in pixel space
would give a superposition of the two original images (i.e., unlike any natural
image).
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Hypothesis H3

If interpolating between high-probability examples (i.e. within their convex set)
gives high-probability examples, then it means that the distribution is more
uniform (fills the space) within that convex set, which is what H3(b) is saying.

we interpolate between samples of different classes, at different depths (top=raw input,
middle=1st layer, bottom=2nd layer). Note how in lower levels one has to go through
unplausible patterns, whereas in the deeper layers one almost jumps from a
high-density region of one class to another (of the other class)
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Course materials are from

Y. Bengio, I. J. Goodfellow, and A. Courville, “Distributed Representations:
Disentangling the Underlying Factors” in “Deep Learning” Book in preparation for
MIT press, 2014.

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, “Better Mixing via Deep
Representations” ICML 2013.
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