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PROBLEM 1

1. Proof: According to the definition of marginal distribution, we have

P (x) =∑
h

P (x,h) =∑
h

e−E(x,h)

Z

=
∑

h e−E(x,h)

Z
= e log

∑
h e−E(x,h)

Z

= e−(− log
∑

h e−E(x,h))

Z

= e−F (x)

Z

where F (x) =− log
∑

h e−E(x,h).

Because
∑

x P (x) = 1, we have

1 =∑
x

P (x) =∑
x

e−F (x)

Z
=

∑
x e−F (x)

Z

Thus we get
Z =∑

x
e−F (x)

2. Proof: First we derive the expression of negative log-likelihood,

− logP (x) =− log
e−F (x)

Z
= log Z +F (x)
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Then, we derive the partial grdient wrt θ,

−∂ logP (x)

∂θ
= 1

Z

∂Z

∂θ
+ ∂F (x)

∂θ

= 1

Z

∂
∑

x̃ e−F (x̃)

∂θ
+ ∂F (x)

∂θ

=−∑
x̃

1

Z
e−F (x̃) ∂F (x̃)

∂θ
+ ∂F (x)

∂θ

=−∑
x̃

P (x̃)
∂F (x̃)

∂θ
+ ∂F (x)

∂θ

thus completes the proof.

3. To generate N from the model, we start with a training sample x (sampled from train-
ing samples), and do |N | Gibbs sampling steps:

x1 ∼ P̂ (x)

h1 ∼ P (h|x1)

x2 ∼ P (x|h1)

h2 ∼ P (h|x2)

x3 ∼ P (x|h2)

h3 ∼ P (h|x3)

...

x|N | ∼ P (x|h|N |−1)

Each Gibbs sampling step in RBM only consists two substeps (sample h given current
x, and sample x given current h), while in a fully-connected Boltzmann Machine, each
step we have to sample every node in x and h given all the other nodes. This is be-
cause in RBM, there are no interactions within x or h, so given h, we can sample all the
nodes of x without affecting each other, and vice versa. The sampling step reduce to
two substeps.

PROBLEM 2

Proof: First, let’s define some notations:
Let X = [x1, x2, . . . , xN ] ∈Rn×N be the N samples (each is a n-dimension vector), H = [h1,h2, . . . ,hN ] ∈
Rp×N (p < n) be N outputs of hidden units and Y = [y1, y2, . . . , yN ] ∈Rn×N be the N outputs.
In auto encoder without non-linear transform, we have:

H =W1X +w1ut (0.1)

Y =W2H +w2ut (0.2)
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where W1 ∈ Rp×n and W2 ∈ Rn×p are the two transformation matrices, w1 ∈ Rp and w2 ∈ Rn

are the two bias terms, and u = [1,1, . . . ,1]t ∈RN .
The target function we want to minimize is:

J = ||X −Y ||2

.

1. In the simplest case, we assume X and Y has zero means and the bias terms are also
zeros:

x̄ = 1

N
X u = 0

ȳ = 1

N
Y u = 0

w1 = 0

w2 = 0

Then the problem reduce to:

J = ||X −W2H ||2
= ||X −W2W1X ||2

where W2W1 ∈ Rn×n but rank p < n. This is equivalent to a typical PCA problem. Let
suppose the SVD of X has the form of

X =UnΣnV t
n

where the columns of Un ∈ Rn×n are the eigenvectors of X X t corresponding to eigen-
values λ1 Ê λ2 Ê . . . Ê λn , Σn = di ag [σ1,σ2, . . . ,σn] with σi =

√
λi and columns of

Vn ∈RN×n are the eigenvectors of X t X .

Then in a PCA problem we know the optimal solution is projecting samples into the
space spanned by the first p eigenvectors:

W2W1X =UpΣpV t
p

with Σp = di ag [σ1,σ2, . . . ,σp ] and Up are formed by the first p eigenvectors in Un .

In general, suppose T is an arbitrary non-singular p ×p matrix,

W2 =Up T −1

and
H = TΣpV t

p .

The intuition is that H is the p-dimension PCA projection of X plus an arbitrary trans-
formation T in the p-dimensional space and W2 is the inverse transformation of T plus
the projection back to original space. Therefore, the space of hidden units is the same
span of first p principal components.
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2. In general cases,

J = ||X −Y ||2
= ||X −W2H −w2ut ||2
= tr [(X −W2H −w2ut )(X −W2H −w2ut )t ]

= tr [(X −W2H)(X −W2H)t ]−2w t
2(X −W2H)u +ut uw t

2w2

To minimize J with respect to w2, we have:

∂J

∂w2
=−2(X −W2H)u +2N w2 = 0

ŵ2 = 1

N
(X −W2H)u

Therefore, the original problem becomes:

J = ||X −W2H −w2ut ||2

= ||X −W2H − 1

N
(X −W2H)uut ||2

= ||(X −X
uut

N
)−W2(H −H

uut

N
)||2

= ||X ′−W2H ′||2

with X ′ = X −X uut

N = X − x̄ut , which is each sample subtracting the mean vector. So w2

will ensure that X ′ has zero mean. In addition, it is easy to show that ŵ2 = 1
N (X−W2H)u

also ensures ȳ = 1
N Y u = x̄ and the problem has the same form as before.

PROBLEM 3

1. Proof: Since in RBM hidden nodes are binary, ie h j ∈ {0,1}, the proof is trivial

f j = log
∑
i j

eh j W j ·x

= log(e0 W j ·x +e1 W j ·x)

= log(1+eW j ·x)

2. Let plot f j (x) = log(1+eW j ·x) wrt W j ·x in Fig 0.1. The function f ′(x) = log(1+ex ) is
called a softplus function. When W j ·x is a large positive value, f j approaches x asymp-
totically, and approaches 0 when W j ·x is a large negative value. When W j ·x is close to
zero, f j has strong non-linearity.

Since P (x) ∝ ∏
j e f j (x), in each dimension j of hidden units, f j indicates whether an

attribute appears and W j ·x classifies the samples into two parts (W j ·x > 0 and W j ·x < 0)
in this dimension.
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Figure 0.1: Softplus Function

3. Since P (x) ∝∏
j e f j (x), f j constrains the distribution of x along the projection direction

W j ·. An input sample x satisfies a constraint fi when Wi ·x > 0, and since the hidden
units are independent (rows of W are independent), x can satisfy multiple constraints.
P (x) is product of all experts (constraints), so P (x) is large only if all the constraint are
satisfied.

4. In a mixture model (sum of experts), the probability is a weighted sum of mixture com-
ponents (experts). For a Gaussian mixture model in particular, the constraints asso-
ciated with an expert N (x;µi ,Σi ) can be regarded as a local region measured in Ma-

halanobis distance di =
√

(x −µi )TΣ−1
i (x −µi ). Although probability within a certain

Mahalanobis distance decreases as number of dimensionality increases, for a certain
number of dimensionality, we could find a local region that contains the majority of
samples. For example, in one dimensional example, the 3-sigma distance contains
99.7% of samples.

Since probabilities are positive, a mixture distribution can have high probability for a
sample x if any one of experts assign high probability to that sample.

PROBLEM 4

1. ∂L
∂Whz
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First we define some symbols and derive some expressions:

d tanh(x)

d x
= 1− tanh2 (x) (0.3)

δi , j =
{

1, i = j

0, i 6= j

δa =


δ1,a

δ2,a
...

δn,a


ht = tanh(Wxh xt +Whhht−1 +bh) (0.4)

zt = softmax(Whz ht +bz ) (0.5)

∂Lt

∂(zt )i
=−∂ log(zt )yt

∂(zt )i
=− 1

(zt )yt

∂(zt )yt

∂(zt )i
=− 1

(zt )yt

δyt ,i (0.6)

∂(zt )i

∂(Whz )lk
= (zt )iδi ,l (ht )k − (zt )i (zt )l (ht )k (0.7)

Then,

∂Lt

∂(Whz )lk
=∑

i

∂Lt

∂(zt )i

∂(zt )i

∂(Whz )l k

=∑
i
− 1

(zt )yt

δyt ,i [(zt )iδi l (ht )k − (zt )i (zt )l (ht )k ]

=− 1

(zt )yt

[(zt )ytδyt ,l (ht )k − (zt )yt (zt )l (ht )k ]

=−δyt ,l (ht )k + (zt )l (ht )k

Therefore,
∂L

∂(Whz )lk
=∑

t
−δyt ,l (ht )k + (zt )l (ht )k

And in matrix form,
∂L

∂Whz
=∑

t
(zt −δyt )hT

t

2. ∂L
∂Whh
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∂(zt )i

∂(ht )p
= (zt )i (Whz )i p − (zt )i (W T

hz )p·zt

∂L

∂(zt )i
= ∂Lt

∂(zt )i
=− 1

(zt )yt

δyt ,i

∂(ht )r

∂(ht−1)p
= [1− (ht )2

r ](Whh)r p

∂L

∂(ht )p
=∑

r

∂L

∂(ht+1)r

∂(ht+1)r

∂(ht )p
+∑

i

∂L

∂(zt )i

∂(zt )i

∂(ht )p

=∑
r

∂L

∂(ht+1)r
[1− (ht )2

r ](Whh)r p +∑
i
− 1

(zt )yt

δyt ,i [(zt )i (Whz )i p − (zt )i (W T
hz )p·zt ]

= [
∑

r

∂L

∂(ht+1)r
[1− (ht )2

r ](Whh)r p ]+ [(W T
hz )p·zt − (Whz )yt ,p ]

∂(ht )p

∂(Whh)mn
= [1− (ht )2

p ]δm,p (ht−1)n

In matrix form,

∂L

∂ht
=W T

hh(1−di ag (ht )2)
∂L

∂ht+1
+W T

hz (zt −δyt )

∂L

∂Whh
=∑

t

∂L

∂ht

∂ht

∂Whh
=∑

t
(1−di ag (ht )2)

∂L

∂ht
hT

t−1
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