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PROBLEM 1

1. Proof: According to the definition of marginal distribution, we have
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2. Proof: First we derive the expression of negative log-likelihood,
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Then, we derive the partial grdient wrt 6,
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thus completes the proof.

3. To generate ./ from the model, we start with a training sample x (sampled from train-
ing samples), and do |.#| Gibbs sampling steps:

x1 ~ P()

h; ~ P(h|x)
x ~ P(x|hy)
h; ~ P(h|x)
x3 ~ P(x|hy)
hz ~ P(h|x3)

X ~ Pxlh_4-1)

Each Gibbs sampling step in RBM only consists two substeps (sample h given current
x, and sample x given current h), while in a fully-connected Boltzmann Machine, each
step we have to sample every node in x and h given all the other nodes. This is be-
cause in RBM, there are no interactions within x or h, so given h, we can sample all the
nodes of x without affecting each other, and vice versa. The sampling step reduce to
two substeps.

PROBLEM 2

Proof: First, let’s define some notations:

Let X = [x1, X2,..., xny] € R”*N be the N samples (each is a n-dimension vector), H = [hy, hy, ..., hy] €
RPN (p < n) be N outputs of hidden units and Y = [y1, »,..., yn] € R”*N be the N outputs.

In auto encoder without non-linear transform, we have:

H=WX+wu’ (0.1)
Y =WoH+ wyu' 0.2)



where W € RP*"" and W5 € R™*P are the two transformation matrices, w; € R” and w, € R"
are the two bias terms, and u = [1,1,...,1]* e RV,
The target function we want to minimize is:

J=1IX-Y|?

1. In the simplest case, we assume X and Y has zero means and the bias terms are also
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Then the problem reduce to:
J=1X - WoHJ?
=X - W W, X

where Wo W, € R™” but rank p < n. This is equivalent to a typical PCA problem. Let
suppose the SVD of X has the form of

X=U,Z,V,

where the columns of U, € R"*" are the eigenvectors of XX’ corresponding to eigen-
values Ay =2 Ay = ... =2 Ay, X, = diagloy,0,...,0,] with o; = y/A; and columns of
V,, € RN*" are the eigenvectors of X' X.

Then in a PCA problem we know the optimal solution is projecting samples into the
space spanned by the first p eigenvectors:

WoWp X = Upzpvg

with X, = diagloy,02,...,0p] and U, are formed by the first p eigenvectors in U,,.

In general, suppose T is an arbitrary non-singular p x p matrix,
W, =U,T"!

and
H=TZ,V,.

The intuition is that H is the p-dimension PCA projection of X plus an arbitrary trans-
formation T in the p-dimensional space and W, is the inverse transformation of T plus
the projection back to original space. Therefore, the space of hidden units is the same
span of first p principal components.



2. In general cases,
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To minimize J with respect to w,, we have:
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Therefore, the original problem becomes:
J= 11X =W H - wpu'||?
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with X' = X-X ”T”t = X —xu!, which is each sample subtracting the mean vector. So w-
will ensure that X’ has zero mean. In addition, it is easy to show that 1, = % X-WoH)u
also ensures j = % Yu = X and the problem has the same form as before.

PROBLEM 3

1. Proof: Since in RBM hidden nodes are binary, ie h j€10,1}, the proofis trivial

f‘j — lOgZehfwf‘x

i
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2. Let plot f;(x) = log(1+ eWiX) wrt W, x in Fig 0.1. The function f'(x) =log(1+e") is
called a softplus function. When W;.x is a large positive value, f; approaches x asymp-
totically, and approaches 0 when W;.x is a large negative value. When W, x is close to
zero, fj has strong non-linearity.

Since P(x) o [; e/i% in each dimension j of hidden units, f; indicates whether an
attribute appears and W;.x classifies the samples into two parts (W;.x>0and W; x < 0)
in this dimension.
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Figure 0.1: Softplus Function

3. Since P(x) o []; eli®, fj constrains the distribution of x along the projection direction
W;.. An input sample x satisfies a constraint f; when W;x > 0, and since the hidden
units are independent (rows of W are independent), x can satisfy multiple constraints.
P(x) is product of all experts (constraints), so P(x) is large only if all the constraint are
satisfied.

4. In a mixture model (sum of experts), the probability is a weighted sum of mixture com-
ponents (experts). For a Gaussian mixture model in particular, the constraints asso-
ciated with an expert N(x;u;,%;) can be regarded as a local region measured in Ma-

halanobis distance d; = \/ (x — ;) TZI.‘I (x — ;). Although probability within a certain
Mahalanobis distance decreases as number of dimensionality increases, for a certain
number of dimensionality, we could find a local region that contains the majority of
samples. For example, in one dimensional example, the 3-sigma distance contains
99.7% of samples.

Since probabilities are positive, a mixture distribution can have high probability for a
sample x if any one of experts assign high probability to that sample.

PROBLEM 4
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First we define some symbols and derive some expressions:
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In matrix form,
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