
Database System
Architecture and Implementation

Tree-Structured Indexes

1

Orientation

2

Executor Parser

Operator Evaluator Optimizer

Files and Index Structures

Buffer Manager

Disk Space Manager

Recovery
Manager

Transaction
Manager

Lock Manager

SQL InterfaceApplicationsWeb Forms

SQL Commands

Index and Data Files
Catalog

Database

DBMS

Figure Credit: Raghu Ramakrishnan and Johannes Gehrke: “Database Management Systems”, McGraw-Hill, 2003.

Module Overview
• Binary search
• ISAM
• B+ trees

– search, insert, and delete
– duplicates
– key compression
– bulk loading

3

non-leaf
level

leaf level

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Binary Search

• We could
1. sort the table on disk (in Sal-order)
2. use binary search to find the first qualifying tuple,

then scan as long as Sal < 4600

Again, let k* denote the full record with key k

4

 How could we prepare for such queries and evaluate them efficiently How could we prepare for such queries and evaluate them efficiently

SELECT *
FROM Employees
WHERE Sal BETWEEN 4300 AND 4600

SELECT *
FROM Employees
WHERE Sal BETWEEN 4300 AND 4600

25
00

*
25

23
*

35
37

*

30
07

*
29

93
*

27
89

*
26

54
*

28
96

*

32
47

*
31

96
*

30
58

*

33
35

*
34

89
*

35
57

*
36

45
*

43
58

*
42

56
*

39
85

*
36

54
*

40
03

*

45
05

*
44

93
*

44
89

*

45
78

*
46

25
*

scan

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Binary Search

• Page I/O operations
⊕ during the scan phase, pages are accessed sequentially
⊖ during the search phase, log2(#tuples) need to be read
⊖ about the same number of pages as tuples need to be read!

• Binary search is that it makes far, unpredictable jumps, which largely
defeat page prefetching

5

25
00

*
25

23
*

35
37

*

30
07

*
29

93
*

27
89

*
26

54
*

28
96

*

32
47

*
31

96
*

30
58

*

33
35

*
34

89
*

35
57

*
36

45
*

43
58

*
42

56
*

39
85

*
36

54
*

40
03

*

45
05

*
44

93
*

44
89

*

45
78

*
46

25
*

page 0 page 1 page 2 page 3 page 4 page 5 page 6 page 7 page 8 page 9 page 10 page 11 page 12

scan

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Tree-Structured Indexing
• Intuition

– improve binary search by introducing an auxiliary structure that only contains
one record per page of the original (data) file

– use this idea recursively until all records fit into one single page

• This simple idea naturally leads to a tree-structured organization of
the indexes
– ISAM
– B+ trees

• Tree-structures indexes are particularly useful if range selections (and
thus sorted file scans) need to be supported

6Slides Credit: Michael Grossniklaus – Uni-Konstanz

Indexed Sequential Access Method
• ISAM

– acts as static replacement for the binary search phase
– reads considerable fewer pages than binary search

• To support range selections on field A
1. in addition to the A-sorted data file, maintain an index file with entries

(records) of the following form

2. ISAM leads to sparse index structures, since in an index entry〈ki, ↑pi〉
key ki is the first (i.e., minimal) A-value on the data file page pointed to by pi,
where pi is the page number

7

p0 k1 p1 k2 · · · kn pnp2

index entry separator pointer

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Indexed Sequential Access Method

3. in the index file, the ki serve as separators between the contents of pages pi-1
and pi

4. it is guaranteed that ki-1 < ki for i = 2, …, n
• We obtain a one-level ISAM structure

8

p0 k1 p1 k2 · · · kn pnp2

index entry separator pointer

 One-level ISAM structure for N + 1 pages One-level ISAM structure for N + 1 pages

p0 p1 p2 pN

k1 k2 kN-1 kN index file

data file

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Searching in ISAM

• To support range selection
1. conduct a binary search on the index file for a key of value lower
2. start a sequential scan of the data file from the page pointed to by the index

entry and scan until field A exceeds upper

• Index file size is likely to be much smaller than data file size
– searching the index is far more efficient than searching the data file
– however, for large data files, even the index file might be too large to support

fast searches

9

 SQL query with range selection on field A SQL query with range selection on field A

SELECT *
FROM R
WHERE A BETWEEN lower AND upper

SELECT *
FROM R
WHERE A BETWEEN lower AND upper

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Multi-Level ISAM Structure
• Recursively apply the index creation step

– treat the top-most index level like the data file and add an additional index layer
on top

– repeat until the top-most index layer fits into a single page (root page)

• This recursive index creation scheme leads to a tree-structured
hierarchy of index levels

10Slides Credit: Michael Grossniklaus – Uni-Konstanz

Multi-Level ISAM Structure

• Each ISAM tree node corresponds to one page (disk block)
• ISAM structure for a given data file is created bottom up

1. sort the data file on the search key field
2. create the index leaf level
3. if top-most index level contains more than one page, repeat

11

 Example Example

25
00

*
25

23
*

35
37

*
35

57
*

30
07

*
30

58
*

26
54

*
27

89
*

28
96

*
29

93
*

31
96

*
32

47
*

33
35

*
34

89
*

36
45

*
36

54
*

42
56

*
43

58
*

39
85

*
40

03
*

45
05

*
45

78
*

44
89

*
44

93
*

46
25

*

26
54

28
96

30
07

31
96

35
37

36
45

39
85

42
56

45
05

46
25

35
37

45
05

da
ta

pa
ge

s
in

de
x p

ag
es

Slides Credit: Michael Grossniklaus – Uni-Konstanz

ISAM Overflow Pages
• The upper levels of the ISAM tree always remain static: updates in the data

file do not affect the upper tree levels
– if space is available on the corresponding leaf page, insert record there
– otherwise, create and maintain a chain of overflow pages hanging off the full

primary leaf page (overflow pages are not ordered in general)
• Over time, search performance in ISAM can degrade

12

Multi-level ISAM structure with overflow pagesMulti-level ISAM structure with overflow pages

· · · · · · · · · · · ·

· · · · · ·

· · ·

overflow pages primary leaf pages

no
n-

le
af

pa
ge

s
le

af
pa

ge
s

Slides Credit: Michael Grossniklaus – Uni-Konstanz

ISAM Example: Initial State
• Each page can hold two index entries plus one (the left-most) page

pointer

13

 Initial State of ISAM structure Initial State of ISAM structure

40

20 33 51 63

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

root page

Slides Credit: Michael Grossniklaus – Uni-Konstanz

ISAM Example: Insertions

14

 ISAM structure after insertion of data records with keys 23, 48, 41, and42 ISAM structure after insertion of data records with keys 23, 48, 41, and42

40

20 33 51 63

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

root page

23* 48* 41*

42*

non-leaf
pages

primary leaf
pages

overflow
pages

Slides Credit: Michael Grossniklaus – Uni-Konstanz

ISAM Example: Deletions

15

 ISAM structure after deletion of data records with keys 42, 51, and 97 ISAM structure after deletion of data records with keys 42, 51, and 97

40

20 33 51 63

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

root page

23* 48* 41*

non-leaf
pages

primary leaf
pages

overflow
pages

Is ISAM Too Static?
• Recall that ISAM structure is static

– non-leaf levels are not touched at all by updates to the data file
– may lead to orphaned index key entries, which do not appear in the index leaf

level (e.g., key value 51 on the previous slide)

• To preserve the separator property of index key entries, it is necessary
to maintain overflow chains

• ISAM may lose balance after heavy updating, which complicates the
life for the query optimizer

16

! Orphaned index key entries! Orphaned index key entries

Does an index key entry like 51 (on the previous slide) cause problems during index key
searches?
Does an index key entry like 51 (on the previous slide) cause problems during index key
searches?

Is ISAM Too Static?
• Recall that ISAM structure is static

– non-leaf levels are not touched at all by updates to the data file
– may lead to orphaned index key entries, which do not appear in the index leaf

level (e.g., key value 51 on the previous slide)

• To preserve the separator property of index key entries, it is necessary
to maintain overflow chains

• ISAM may lose balance after heavy updating, which complicates the
life for the query optimizer

17

! Orphaned index key entries! Orphaned index key entries

Does an index key entry like 51 (on the previous slide) cause problems during index key
searches?
 No, since the index keys maintain their separator property.

Does an index key entry like 51 (on the previous slide) cause problems during index key
searches?
 No, since the index keys maintain their separator property.

Static Is Not All Bad
• Leaving free space during index creation reduces the

insertion/overflow problem (typically ≈ 20% free space)
• Since ISAM indexes are static, pages do not need to be locked during

concurrent index access
– locking can be a serious bottleneck in dynamic tree indexes (particularly near

the root node)

• ISAM may be the index of choice for relatively static data

18

 ISAM-style implementations ISAM-style implementations

 MySQL
– implements and extends ISAM as MyISAM, which is the default storage engine

 Berkeley DB
 Microsoft Access

 MySQL
– implements and extends ISAM as MyISAM, which is the default storage engine

 Berkeley DB
 Microsoft Access

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Fan-Out

19

 Definition Definition

The average number of children for a non-leaf node is called the fan-out of the tree. If every non-
leaf node has n children, a tree of height h has nh leaf pages.
 In practice, nodes do not have the same number of children, but using the average value F

for n is a good approximation to the number of leaf pages Fh.

The average number of children for a non-leaf node is called the fan-out of the tree. If every non-
leaf node has n children, a tree of height h has nh leaf pages.
 In practice, nodes do not have the same number of children, but using the average value F

for n is a good approximation to the number of leaf pages Fh.

! Exercise: Number of children! Exercise: Number of children

Why can non-leaf nodes have different numbers of children?Why can non-leaf nodes have different numbers of children?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Fan-Out

20

 Definition Definition

The average number of children for a non-leaf node is called the fan-out of the tree. If every non-
leaf node has n children, a tree of height h has nh leaf pages.
 In practice, nodes do not have the same number of children, but using the average value F

for n is a good approximation to the number of leaf pages Fh.

The average number of children for a non-leaf node is called the fan-out of the tree. If every non-
leaf node has n children, a tree of height h has nh leaf pages.
 In practice, nodes do not have the same number of children, but using the average value F

for n is a good approximation to the number of leaf pages Fh.

! Exercise: Number of children! Exercise: Number of children

Why can non-leaf nodes have different numbers of children?
 Index entries k* can be of variable length if the index is built on a variable-length key.

Additionally, index entries k* of variant ➊ and ➌ can be of variable length because variable-
length records or lists of rids are stored in the index entries.

Why can non-leaf nodes have different numbers of children?
 Index entries k* can be of variable length if the index is built on a variable-length key.

Additionally, index entries k* of variant ➊ and ➌ can be of variable length because variable-
length records or lists of rids are stored in the index entries.

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Cost of Searches in ISAM
• Let be the number of pages in the data file and let denote the fan-

out of the ISAM tree
– when the index search begins, the search space is of size
– with the help of the root page, the index search is guided to a sub-tree of size· 1
– as the index search continues down the tree, the search space is repeatedly

reduced by a factor of · 1 · 1 ⋯
– the index search ends after steps, when the search space has been reduced to

size 1 (i.e., when it reaches the index leaf level and hits the data page that
contains the desired record)· 1 ≝ 1 ⇔ = log

21Slides Credit: Michael Grossniklaus – Uni-Konstanz

Cost of Searches in ISAM

22

! Exercise: Binary search vs. tree! Exercise: Binary search vs. tree

Assume a data file consists of 100 million leaf pages. How many page I/O operations will it
take to find a value using Ⓐ binary search and Ⓑ an ISAM tree with fan-out 100?
Assume a data file consists of 100 million leaf pages. How many page I/O operations will it
take to find a value using Ⓐ binary search and Ⓑ an ISAM tree with fan-out 100?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Cost of Searches in ISAM

23

! Exercise: Binary search vs. tree! Exercise: Binary search vs. tree

Assume a data file consists of 100 million leaf pages. How many page I/O operations will it
take to find a value using Ⓐ binary search and Ⓑ an ISAM tree with fan-out 100?

Ⓐ binary search log 100,000,000 ≈ 25 page I/O operations
Ⓑ ISAM tree with fan-out 100log 100,000,000 = 4 page I/O operations

Assume a data file consists of 100 million leaf pages. How many page I/O operations will it
take to find a value using Ⓐ binary search and Ⓑ an ISAM tree with fan-out 100?

Ⓐ binary search log 100,000,000 ≈ 25 page I/O operations
Ⓑ ISAM tree with fan-out 100log 100,000,000 = 4 page I/O operations

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Properties
• The B+ tree index structure is derived from the ISAM index structure,

but is fully dynamic w.r.t. updates
– search performance is only dependent on the height of the B+ tree (because of

a high fan-out, the height rarely exceeds 3)
– B+ trees remains balanced, no overflow chains develop
– B+ trees support efficient insert/delete operations, where the underlying data

file can grow/shrink dynamically
– B+ tree nodes (with the exception of the root node) are guaranteed to have a

minimum occupancy of 50% (typically 66%)

24Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Trees Structure
• Differences between B+ tree structure and ISAM structure

– leaf nodes are connected to form a doubly-linked list, the so-called sequence
set
 not a strict requirement, but implemented in most systems

– leaves may contain actual data records (variant ➊) or just references to records
on data pages (variants ➋ and ➌)
 instead, ISAM leaves are the data pages themselves

25

 Sketch of B+ tree structure (data pages not shown) Sketch of B+ tree structure (data pages not shown)

· · ·

· · ·

· · · · · ·

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Non-Leaf Nodes

• B+ tree non-leaf nodes use the same internal layout as inner ISAM
nodes
– the minimum and maximum number of entries is bounded by the order of

the B+ tree ≤ ≤ 2 · (root node: 1 ≤ ≤ 2 ·)
– a node contains + 1 pointers, where pointer (1 ≤ ≤ − 1) points to a

sub-tree in which all key values are such that≤ <
(points to a sub-tree with key values < , points to a sub-tree with key
values ≥)

26

 B+ inner (non-leaf) node B+ inner (non-leaf) node

p0 k1 p1 k2 · · · k2d p2dp2

index entry separator pointer

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Leaf Nodes
• B+ tree leaf nodes contain pointers to data records (not pages)
• A leaf node entry with key value k is denoted as k* as before
• All index entry variants ➊, ➋, and ➌ can be used to implement the

leaf entries
– for variant ➊, the B+ tree represents the index as well as the data file itself and

leaf node entries therefore look like
ki* = 〈ki, 〈. . .〉〉

– for variants ➋ and ➌, the B+ tree is managed in a file separate from the actual
data file and leaf node entries look like

ki* = 〈ki, rid〉
ki* = 〈ki, [rid1, rid2, …]〉

27Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Search

• Each node contains between 2 and 4 entries (order d = 2)
• Example of B+ tree searches

– for entry 5*, follow the left-most child pointer, since 5 < 13
– for entries 14* or 15*, follow the second pointer, since 13 ≤ 14 < 17 and 13 ≤

15 < 17 (because 15* cannot be found on the appropriate leaf, it can be
concluded that it is not present in the tree)

– for entry 24*, follow the fourth child pointer, since 24 ≤ 24 < 30

28

 Example of a B+ tree with order d = 2 Example of a B+ tree with order d = 2

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

root page

33* 34* 38* 39*

13 17 24 30

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Search

29

 Searching in a B+ tree Searching in a B+ tree

functionsearch(k):↑node
returntreeSearch(root, k)

end

functiontreeSearch(↑node, k):↑node
if node is a leaf node thenreturn↑node
else
if k < k1 thenreturntreeSearch(p0, k);
else
if k ≥ k2d thenreturntreeSearch(p2d, k);
else

find i such that ki ≤ k < ki+1;
returntreeSearch(pi, k)

end

functionsearch(k):↑node
returntreeSearch(root, k)

end

functiontreeSearch(↑node, k):↑node
if node is a leaf node thenreturn↑node
else
if k < k1 thenreturntreeSearch(p0, k);
else
if k ≥ k2d thenreturntreeSearch(p2d, k);
else

find i such that ki ≤ k < ki+1;
returntreeSearch(pi, k)

end

p0 k1 p1 k2 · · · k2d p2dp2

index entry separator pointer

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert
• B+ trees remain balanced regardless of the updates performed

– invariant: all paths from the root to any leaf must be of equal length
– insertions and deletions have to preserve this invariant

• We cannot start an overflow chain hanging off p as this solution would
violate the balancing invariant

• We cannot place k* elsewhere (even close to n) as the cost of
search(k) should only be dependent on the tree’s height

30

 Basic principle of insertion into a B+ tree with order d Basic principle of insertion into a B+ tree with order d

To insert a record with key k
1. start with root node and recursively insert entry into appropriate child node
2. descend down tree until leaf node is found, where entry belongs

(let n denote the leaf node to hold the record and m the number of entries in n)
3. if m < 2 · d, there is capacity left in n and k* can be stored in leaf node n
! Otherwise…?

To insert a record with key k
1. start with root node and recursively insert entry into appropriate child node
2. descend down tree until leaf node is found, where entry belongs

(let n denote the leaf node to hold the record and m the number of entries in n)
3. if m < 2 · d, there is capacity left in n and k* can be stored in leaf node n
! Otherwise…?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

31

 Splitting nodes Splitting nodes

If a node n is full, it must be split
1. create a new node n’
2. distribute the entries of n and the new entry k over n and n’
3. insert an entry ↑n’ pointing to the new node n’ into its parent
Splitting can therefore propagate up the tree. If the root has to be split, a new root is created
and the height of the tree increases by 1.

If a node n is full, it must be split
1. create a new node n’
2. distribute the entries of n and the new entry k over n and n’
3. insert an entry ↑n’ pointing to the new node n’ into its parent
Splitting can therefore propagate up the tree. If the root has to be split, a new root is created
and the height of the tree increases by 1.

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

32

 Example: Insertion into a B+ tree with order d = 2 Example: Insertion into a B+ tree with order d = 2

1. insert record with key k = 8 into the following B+ tree

2. the new record has to be inserted into the left-most leaf node n
3. since n is already full, it has to be split
4. create a new leaf node n’
5. entries 2* and 3* remain on n, whereas

entries 5*, 7* and 8* (new) go into n’
6. key k’ = 5 is the new separator between

nodes n and n’ and has to be inserted
into their parent (copy up)

1. insert record with key k = 8 into the following B+ tree

2. the new record has to be inserted into the left-most leaf node n
3. since n is already full, it has to be split
4. create a new leaf node n’
5. entries 2* and 3* remain on n, whereas

entries 5*, 7* and 8* (new) go into n’
6. key k’ = 5 is the new separator between

nodes n and n’ and has to be inserted
into their parent (copy up)

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

root node

33* 34* 38* 39*

13 17 24 30

2* 3* 5* 7* 8*

13 17 24 30

5

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

33

 Insert into B+ tree of degree d (leaf nodes) Insert into B+ tree of degree d (leaf nodes)

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has space then

put k* on L;↑newChild ← null; return;
else

split L: first d entries stay, rest move to new node L’;
put k* on L or L’;
set sibling pointers in L and L’;
↑newChild ← @(〈smallest key value on L’, ↑L’〉);
return;

endproc;

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has space then

put k* on L;↑newChild ← null; return;
else

split L: first d entries stay, rest move to new node L’;
put k* on L or L’;
set sibling pointers in L and L’;
↑newChild ← @(〈smallest key value on L’, ↑L’〉);
return;

endproc;

2* 3* 5* 7* 8*

13 17 24 30

5 newChild

L L’

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

34

 Example: Insertion into a B+ tree with order d = 2 (cont’d) Example: Insertion into a B+ tree with order d = 2 (cont’d)

7. to insert entry k’ = 5 into parent node,
another split has to occur

8. parent node is also full since it already
has 2d keys and 2d + 1 pointers

9. with the new entry, there is a total of
2d + 1 keys and 2d + 2 pointers

10. form two minimally full non-leaf nodes,
each containing d keys and d + 1 pointers,
plus an extra key, the middle key

11. middle key plus pointer to second non-
leaf node constitute a new index entry

12. new index entry has to be inserted into
parent of split non-leaf node (push up)

7. to insert entry k’ = 5 into parent node,
another split has to occur

8. parent node is also full since it already
has 2d keys and 2d + 1 pointers

9. with the new entry, there is a total of
2d + 1 keys and 2d + 2 pointers

10. form two minimally full non-leaf nodes,
each containing d keys and d + 1 pointers,
plus an extra key, the middle key

11. middle key plus pointer to second non-
leaf node constitute a new index entry

12. new index entry has to be inserted into
parent of split non-leaf node (push up)

2* 3* 5* 7* 8*

13 17 24 30

5

5 13 24 30

17

parent node

entry k’ = 5

middle key

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

35

 Insert into B+ tree of degree d (non-leaf nodes) Insert into B+ tree of degree d (non-leaf nodes)

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then

find i such that ki ≤ k < ki+1;
↑newChild =insert(pi, k);
if↑newChild is null then return;
else
if N has space then put newChild on it;↑newChild ← null;return;
else

split N: first d key values and d + 1 pointers stay,
last d key values and d + 1 pointers move to new node N’;

↑newChild ← @(〈smallest key value on N’, ↑N’〉);
if N is root then...
return;

if node is a leaf node, say L then...
endproc;

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then

find i such that ki ≤ k < ki+1;
↑newChild =insert(pi, k);
if↑newChild is null then return;
else
if N has space then put newChild on it;↑newChild ← null;return;
else

split N: first d key values and d + 1 pointers stay,
last d key values and d + 1 pointers move to new node N’;

↑newChild ← @(〈smallest key value on N’, ↑N’〉);
if N is root then...
return;

if node is a leaf node, say L then...
endproc;

5 13 24 30

17 newChild

N N’

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

36

 Example: Insertion into a B+ tree with order d = 2 (cont’d) Example: Insertion into a B+ tree with order d = 2 (cont’d)

13. parent node that was split, was the
(old) root node of the B+ tree

14. create a new root node to hold the
entry that distinguishes the two split
index pages

13. parent node that was split, was the
(old) root node of the B+ tree

14. create a new root node to hold the
entry that distinguishes the two split
index pages

5 13 24 30

17 middle key

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

new root node

33* 34* 38* 39*

17

5 13 24 30

8*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

37

 Insert into B+ tree of degree d (root node) Insert into B+ tree of degree d (root node)

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then
...

split N: first d key values and d + 1 pointers stay,
last d key values and d + 1 pointers move to new node N’;

↑newChild ← @(〈smallest key value on N’, ↑N’〉);
if N is root then

create new node with 〈↑N, newChild〉;
make the tree’s root node pointer point to the new node

return;
if node is a leaf node, say L then...

endproc;

functioninsert(↑node, k*):↑newChild
if node is a non-leaf node, say N then
...

split N: first d key values and d + 1 pointers stay,
last d key values and d + 1 pointers move to new node N’;

↑newChild ← @(〈smallest key value on N’, ↑N’〉);
if N is root then

create new node with 〈↑N, newChild〉;
make the tree’s root node pointer point to the new node

return;
if node is a leaf node, say L then...

endproc;

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Root Node Split
• Splitting starts at the leaf level and continues upward as long as index

nodes are fully occupied
• Eventually, the root node might be split

– root node is the only node that may have an occupancy of < 50%
– tree height only increases if the root is split

38

! How often do you expect a root split to happen?! How often do you expect a root split to happen?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Root Node Split
• Splitting starts at the leaf level and continues upward as long as index

nodes are fully occupied
• Eventually, the root node might be split

– root node is the only node that may have an occupancy of < 50%
– tree height only increases if the root is split

39

! How often do you expect a root split to happen?! How often do you expect a root split to happen?

Assume a B+ tree over 8 byte integers with 4 kB pages and
with pointers encoded as 8 byte integers.
• 128-256 index entries/page (fan-out F)
• an index of height h indexes at least

128h records, typically more

Assume a B+ tree over 8 byte integers with 4 kB pages and
with pointers encoded as 8 byte integers.
• 128-256 index entries/page (fan-out F)
• an index of height h indexes at least

128h records, typically more

h #records
2 16,000
3 2,000,000
4 250,000,000

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert

40

! Further key insertions! Further key insertions

How does the insertion of records with keys k = 23 and k = 40 alter the B+ tree?How does the insertion of records with keys k = 23 and k = 40 alter the B+ tree?

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

root node

33* 34* 38* 39*

17

5 13 24 30

8*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert with Redistribution
• Redistribution further improves average occupancy in a B+ tree

– before a node n is split, its entries are redistributed with a sibling
– a sibling of a node n is a node that is immediately to the left or right

of N and has the same parent as n

41

 Example: Insertion with redistribution into a B+ tree with order d = 2 Example: Insertion with redistribution into a B+ tree with order d = 2

1. insert record with key k = 6 into the following B+ tree

2. the new record has to be inserted into the left-most leaf node, say n, which is full
3. however, the (only) sibling of n only has two entries and can accommodate more
4. therefore, insert of k = 6 can be handled with a redistribution

1. insert record with key k = 6 into the following B+ tree

2. the new record has to be inserted into the left-most leaf node, say n, which is full
3. however, the (only) sibling of n only has two entries and can accommodate more
4. therefore, insert of k = 6 can be handled with a redistribution

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

root node

33* 34* 38* 39*

13 17 24 30

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert with Redistribution
• Remarks

– in order to reflect redistribution, the parent node has to be updated
– inspecting one or both sibling(s) of a B+ tree node involves additional I/O

operations
– actual implementations often use redistribution at the leaf-level only, because

the sequence set page chaining gives direct access to both sibling pages

42

 Example: Insertion with redistribution into a B+ tree with order d = 2 Example: Insertion with redistribution into a B+ tree with order d = 2

5. redistribution “rotates” values through the parent node from node n to its sibling5. redistribution “rotates” values through the parent node from node n to its sibling

2* 3* 5* 6* 7* 14* 19* 20* 22* 24* 27* 29*

root node

16* 33* 34* 38* 39*

7 17 24 30

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Insert with Redistribution

43

! Redistribution makes a difference! Redistribution makes a difference

Insert a record with key k = 30
Ⓐ without redistribution
Ⓑ using leaf-level redistribution
into the B+ tree shown below. How does the tree change?

Insert a record with key k = 30
Ⓐ without redistribution
Ⓑ using leaf-level redistribution
into the B+ tree shown below. How does the tree change?

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

root node

33* 34* 38* 39*

13 17 24 30

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete
• B+ tree deletion algorithm follows the same basic principle as the

insertion algorithm

44

 Basic principle of deletion from a B+ tree with order d Basic principle of deletion from a B+ tree with order d

To delete a record with key k
1. start with root node and recursively delete entry from appropriate child node
2. descend down tree until leaf node is found, where entry is stored (let n denote the leaf node

that holds the record and m the number of entries in n)
3. if m > d, n does not have minimum occupancy and k* can simply be deleted from leaf node

n
! Otherwise…?

To delete a record with key k
1. start with root node and recursively delete entry from appropriate child node
2. descend down tree until leaf node is found, where entry is stored (let n denote the leaf node

that holds the record and m the number of entries in n)
3. if m > d, n does not have minimum occupancy and k* can simply be deleted from leaf node

n
! Otherwise…?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete
• Two techniques to handle the case that number of entries m of a node

n falls under the minimum occupancy threshold d
• Redistribution

– redistribute entries between n and an adjacent siblings
– update parent to reflect redistribution: change entry pointing to second node to

lowest search key in second node

• Merge
– merge node n with an adjacent sibling
– update parent to reflect merge: delete entry pointing to second node
– if last entry in root is deleted, the height of the tree decreases by 1

45Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

46

 Example: Deletion from a B+ tree with order d = 2 Example: Deletion from a B+ tree with order d = 2

1. delete record with key k = 19 (i.e., entry 19*) from the following B+ tree

2. recursive tree traversal ends at leaf node n containing entries 19*,20*, and 22*
3. since m = 3 > 2, there is no node underflow in n after removal and entry 19* can safely be

deleted

1. delete record with key k = 19 (i.e., entry 19*) from the following B+ tree

2. recursive tree traversal ends at leaf node n containing entries 19*,20*, and 22*
3. since m = 3 > 2, there is no node underflow in n after removal and entry 19* can safely be

deleted

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

17

5 13 24 30

8*

root node

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

47

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

4. subsequent deletion of record with key k = 20 (i.e., entry 20*) results in underflow of node
n as it already has minimal occupancy d = 2

5. since the (only) sibling n’ of n has 3 > 2
entries (24*, 27*, and 29*), redistribution
can be used to deal with the underflow of n

6. move entry 24* to n and copy up the
new splitting key 27, which is the new
smallest key value on n’

4. subsequent deletion of record with key k = 20 (i.e., entry 20*) results in underflow of node
n as it already has minimal occupancy d = 2

5. since the (only) sibling n’ of n has 3 > 2
entries (24*, 27*, and 29*), redistribution
can be used to deal with the underflow of n

6. move entry 24* to n and copy up the
new splitting key 27, which is the new
smallest key value on n’

2* 3* 5* 7* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

17

5 13 27 30

8*

root node

n n’

20* 22* 24* 27* 29*· · · · · ·

24 30

n n’

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

48

 Delete from B+ tree of degree d (leaf nodes: redistribution) Delete from B+ tree of degree d (leaf nodes: redistribution)

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has entries to spare then remove k*;↑oldChild ← null;return;
else get a sibling S of L;
if S has extra entries then

redistribute entries evenly between L and S;
find entry for right node, say R, in parent;
replace key value in parent by new low-key value in R;
↑oldChild ← null; return;

else...
endproc;

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has entries to spare then remove k*;↑oldChild ← null;return;
else get a sibling S of L;
if S has extra entries then

redistribute entries evenly between L and S;
find entry for right node, say R, in parent;
replace key value in parent by new low-key value in R;
↑oldChild ← null; return;

else...
endproc;

20* 22* 24* 27* 29*· · · · · ·

24 30

L S/
R

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

49

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

7. suppose record with key k = 24 (i.e., entry 24*) is deleted next

8. again, leaf-node n underflows as it only contains 1 < 2 entries after deletion
9. redistribution is not an option as (only) sibling n’

of n just contains two entries (27* and 29*)
10. together n and n’ contain 3 > 2 entries and

can therefore be merged: move entries 27*
and 29* from n’ to n, then delete node n’

11. note that separator 27 between n and n’ is no longer needed and therefore discarded
(recursively deleted) from parent

7. suppose record with key k = 24 (i.e., entry 24*) is deleted next

8. again, leaf-node n underflows as it only contains 1 < 2 entries after deletion
9. redistribution is not an option as (only) sibling n’

of n just contains two entries (27* and 29*)
10. together n and n’ contain 3 > 2 entries and

can therefore be merged: move entries 27*
and 29* from n’ to n, then delete node n’

11. note that separator 27 between n and n’ is no longer needed and therefore discarded
(recursively deleted) from parent

2* 3* 5* 7* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

17

5 13 27 30

8*

root node

n n’

22* 27* 29* 33* 34* 38*· · · 39*

30

n

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

50

 Delete from B+ tree of degree d (leaf nodes: merge) Delete from B+ tree of degree d (leaf nodes: merge)

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has entries to spare then...
else...
if S has extra entries then...
elsemerge L and S, let R be the right node

↑oldChild ← @(current entry in parent for R);
move all entries from R to node on left;
discard empty node R;
adjust sibling pointers;
return;

endproc;

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if node is a leaf node, say L then
if L has entries to spare then...
else...
if S has extra entries then...
elsemerge L and S, let R be the right node

↑oldChild ← @(current entry in parent for R);
move all entries from R to node on left;
discard empty node R;
adjust sibling pointers;
return;

endproc;

22* 24* 27* 29*· · · · · ·

27 30

L S/
R

22* 27* 29* 33* 34* 38*· · · 39* · · ·

27 30

L

oldChild

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

51

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

12. now, parent of n underflows as it only contains
1 < 2 entries after deletion of entry 〈27, ↑n’〉

13. redistribution is not an option as its sibling
just contains two entries (5 and 13)

14. therefore, merge the nodes into a new node
with d + (d – 1) keys and d + 1 + d pointers

15. since a complete node needs to contain 2d keys
and 2d + 1 pointers, a key value is missing

16. missing key value is pulled down (i.e., deleted)
from the parent to complete the merged node

12. now, parent of n underflows as it only contains
1 < 2 entries after deletion of entry 〈27, ↑n’〉

13. redistribution is not an option as its sibling
just contains two entries (5 and 13)

14. therefore, merge the nodes into a new node
with d + (d – 1) keys and d + 1 + d pointers

15. since a complete node needs to contain 2d keys
and 2d + 1 pointers, a key value is missing

16. missing key value is pulled down (i.e., deleted)
from the parent to complete the merged node

22* 27* 29* 33* 34* 38*· · · 39*

30

n

5 13 30

17

17

left right left right

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

52

 Delete from B+ tree of degree d (non-leaf nodes: merge) Delete from B+ tree of degree d (non-leaf nodes: merge)

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then

find i such that ki ≤ k < ki+1;
↑oldChild = delete(pi, k);
if↑oldChild is null then return;
else

remove oldChild from N;
if N has entries to spare then↑oldChild ← null; return;
else get a sibling S of N, using ↑parent
if S has extra entries then...
elsemerge L and S, let R be the right node

↑oldChild ← @(current entry in parent for R);
pull splitting key from parent down into left node;
move all entries from R to left node; discard empty node R; return;

if node is a leaf node, say L then...
endproc;

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then

find i such that ki ≤ k < ki+1;
↑oldChild = delete(pi, k);
if↑oldChild is null then return;
else

remove oldChild from N;
if N has entries to spare then↑oldChild ← null; return;
else get a sibling S of N, using ↑parent
if S has extra entries then...
elsemerge L and S, let R be the right node

↑oldChild ← @(current entry in parent for R);
pull splitting key from parent down into left node;
move all entries from R to left node; discard empty node R; return;

if node is a leaf node, say L then...
endproc;

5 13 30

17

17S N/R

parent

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete
• Remarks

– discarding the root node is the only situation in which the B+ tree height
decreases

– therefore, the B+ tree always remains balanced

53

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

17. since the last remaining entry in the root was discarded, the merged node becomes the new
root

17. since the last remaining entry in the root was discarded, the merged node becomes the new
root

2* 3* 5* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*

5 13 17 30

8*

new root node

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

54

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

18. suppose the following B+ tree is encountered during deletion

19. notice that the non-leaf node with entry 30 underflows
20. but its (only) sibling has two entries (17 and 20) to spare

18. suppose the following B+ tree is encountered during deletion

19. notice that the non-leaf node with entry 30 underflows
20. but its (only) sibling has two entries (17 and 20) to spare

2* 3* 5* 7* 14* 16* 17* 18* 22* 27* 33* 34* 38* 39*

22

5 13 17 20 30

8*

root node

20* 21* 29*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

55

 Example: Deletion from a B+ tree with order d = 2 (cont’d) Example: Deletion from a B+ tree with order d = 2 (cont’d)

21. redistribute entries by “rotating” entry 20 through the parent and pushing former parent
entry 22 down

21. redistribute entries by “rotating” entry 20 through the parent and pushing former parent
entry 22 down

2* 3* 5* 7* 14* 16* 17* 18* 22* 27* 33* 34* 38* 39*

20

5 13 17 22 30

8*

root node

20* 21* 29*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Delete

56

 Delete from B+ tree of degree d (non-leaf nodes: redistribution) Delete from B+ tree of degree d (non-leaf nodes: redistribution)

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if↑oldChild is null then ...
else...
if N has entries to spare then...
else get a sibling S of N, using ↑parent
if S has extra entries then

redistribute entries evenly between N and S through parent;
↑oldChild ← null; return;

else...
if node is a leaf node, say L then...

endproc;

functiondelete(↑parent, ↑node, k*):↑oldChild
if node is a non-leaf node, say N then...
if↑oldChild is null then ...
else...
if N has entries to spare then...
else get a sibling S of N, using ↑parent
if S has extra entries then

redistribute entries evenly between N and S through parent;
↑oldChild ← null; return;

else...
if node is a leaf node, say L then...

endproc;

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Merge and Redistribution Effort
• Actual DBMS implementations often avoid the cost of merging and/or

redistribution by relaxing the minimum occupancy rule

57
Slide Credit: Torsten Grust, University of Tübingen, Germany

 B+ tree deletion in DB2 B+ tree deletion in DB2

• System parameter MINPCTUSED (minimum percent used) controls when the kernel should
try a leaf node merge (“online index reorg”): particularly simple because of the sequence set
pointers connecting adjacent leaves

• Non-leaf nodes are never merged: only a “full index reorg” merges non-leaf nodes
• To improve concurrency, deleted index entries are merely marked as deleted and only

removed later (IBM DB2 UDB type-2 indexes)

• System parameter MINPCTUSED (minimum percent used) controls when the kernel should
try a leaf node merge (“online index reorg”): particularly simple because of the sequence set
pointers connecting adjacent leaves

• Non-leaf nodes are never merged: only a “full index reorg” merges non-leaf nodes
• To improve concurrency, deleted index entries are merely marked as deleted and only

removed later (IBM DB2 UDB type-2 indexes)

B+ Trees and Duplicates
• As discussed here, B+ tree search, insert, (and delete)

procedures ignore the presence of duplicate key values
• This assumption is often reasonable

– if the key field is a primary key for the data file (i.e., for the associated relation),
the search keys k are unique by definition

58
Slide Credit: Torsten Grust, University of Tübingen, Germany

 Treatment of duplicate keys in DB2 Treatment of duplicate keys in DB2

Since duplicate keys add to the B+ tree complexity, IBM DB2 forces uniqueness by forming a
composite key of the form 〈k, id〉, where id is the unique tuple identity of the data record with
key k
Tuple identities are
1. system-maintained unique identifiers for each tuple in a table
2. not dependent on tuple order
3. immutable

Since duplicate keys add to the B+ tree complexity, IBM DB2 forces uniqueness by forming a
composite key of the form 〈k, id〉, where id is the unique tuple identity of the data record with
key k
Tuple identities are
1. system-maintained unique identifiers for each tuple in a table
2. not dependent on tuple order
3. immutable

B+ Trees and Duplicates
Other approaches alter the B+ tree implementation to add real support
for duplicates
1. Use variant ➌ to represent the index data entries k*

k* = 〈k, [rid1, rid2, …]〉
– each duplicate record with key field k makes the list of rids grow
– key k is not repeated stored, which saves space
– B+ tree search and maintenance routines largely unaffected
– index data entry size varies, which affect the B+ tree order concept
– implemented, for example, in IBM Informix Dynamic Server

2. Treat duplicate value like any other value in the insert and
delete procedures
– doing so affects the search procedure
– see example on following slides

59Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Trees and Duplicates

60

! Example: Impact on duplicate insertion on search(k)! Example: Impact on duplicate insertion on search(k)

Insert three records with key k = 2 into the following B+ tree of order d = 2 (without using
redistribution)
Insert three records with key k = 2 into the following B+ tree of order d = 2 (without using
redistribution)

1* 2* 4* 5* 10* 11*

3 8

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Trees and Duplicates

61

 Example: Impact on duplicate insertion on search(k) Example: Impact on duplicate insertion on search(k)

Below the B+ tree that results from the exercise on the previous slide is shown

The same B+ tree after inserting another two records with key k = 2, is shown below

 search(k)
• non-leaf nodes: follow the left-most node pointer pi, such that ki ≤ k ≤ ki+1
• leaf nodes: also check right sibling (and its right sibling and its right sibling and…)

Below the B+ tree that results from the exercise on the previous slide is shown

The same B+ tree after inserting another two records with key k = 2, is shown below

 search(k)
• non-leaf nodes: follow the left-most node pointer pi, such that ki ≤ k ≤ ki+1
• leaf nodes: also check right sibling (and its right sibling and its right sibling and…)

1* 2* 2* 2* 4* 5* 10* 11*

2 3 8

2*

1* 2* 2* 2* 2* 2* 4* 5*2* 10* 11*

2 2 3 8

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Key Compression in B+ Trees
• Recall that the fan-out F is a deciding factor in the search I/O effort s

in an ISAM or B+ tree for a file of N pages: = log

62

 Tree index search effort dependent on fan-out F Tree index search effort dependent on fan-out F

 It clearly pays off to invest
effort and try to maximize the
fan-out F of a given B+ tree
implementation

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Key Compression in B+ Trees
• Index entries in non-leaf B+ tree nodes are pairs 〈ki, ↑pi〉

– size of page pointers depends on pointer representation of DBMS or hardware
specifics

– |↑pi | ≪ |ki |, especially for key field types like CHAR(·) or VARCHAR(·)

• To minimize key size, recall that key values in non-leaf nodes only
direct calls to the appropriate leaf pages
– actual key values are not needed
– arbitrary values could be chosen

as long as the separator property
is maintained

– for text attributes, a good choice
can be prefixes of key values

63

 Excerpt of search(k) Excerpt of search(k)

if k < k1 then...
else
if k ≥ k2d then...
else

find i such that ki ≤ k < ki+1;
...

if k < k1 then...
else
if k ≥ k2d then...
else

find i such that ki ≤ k < ki+1;
...

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Key Compression in B+ Trees

64

 Example: Searching a B+ tree node with VARCHAR(·) keys Example: Searching a B+ tree node with VARCHAR(·) keys

• To guide searches across this B+ tree node, it is sufficient to store the prefixes iro and
irr

• B+ tree semantics must be preserved
– all index entries stored in the sub-tree left of iro have keys k < iro
– all index entries stored in the sub-tree right of iro have keys k ≥ iro

(and k < irr)

• To guide searches across this B+ tree node, it is sufficient to store the prefixes iro and
irr

• B+ tree semantics must be preserved
– all index entries stored in the sub-tree left of iro have keys k < iro
– all index entries stored in the sub-tree right of iro have keys k ≥ iro

(and k < irr)

ironical · · ·irregular

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Key Suffix Truncation

65

 Example: Key suffix truncation in a B+ tree with order d = 1 Example: Key suffix truncation in a B+ tree with order d = 1

Before key suffix truncation

After key suffix truncation

Before key suffix truncation

After key suffix truncation

Goofy

Daisy Duck

Donald Duck

Donald Duck

Mickey Mouse Minnie Mouse

Goofy Mickey Mouse Minnie Mouse

G

Daisy Duck

Do

Donald Duck

Mic Min

Goofy Mickey Mouse Minnie Mouse

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Key Suffix Truncation

66

! Key suffix truncation! Key suffix truncation

How would a B+ tree key compressor alter the key entries in the non-leaf node of this B+ tree
excerpt?
How would a B+ tree key compressor alter the key entries in the non-leaf node of this B+ tree
excerpt?

ironical · · ·irregularirish

iron ironcladirksome irreducibleirrational · · ·

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Key Prefix Compression in B+ Trees
• Keys within a B+ tree node often share a common prefix

• Key prefix compression
– store common prefix only once (e.g., as “key” k0)
– keys have become highly discriminative now

• Violating the 50% occupancy rule can help to improve the
effectiveness of prefix compression

67

 Example: Shared key prefixes in non-leaf B+ tree nodes Example: Shared key prefixes in non-leaf B+ tree nodes

Mic Min

Goofy Mickey Minnie

c n

Goofy Mickey Minnie

Mi

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading

• Last SQL command initiates one million B+ tree insert(·) calls, a
so-called index bulk load

• DBMS will traverse the growing B+ tree index from its root down to the
leaf pages one million times

68

 Database log: table and index creation Database log: table and index creation

CREATE TABLE t1 (id INT, text VARCHAR(10));

… insert 1,000,000 rows into table t1…

CREATE INDEX t1_idx ON t1 (id ASC);

CREATE TABLE t1 (id INT, text VARCHAR(10));

… insert 1,000,000 rows into table t1…

CREATE INDEX t1_idx ON t1 (id ASC);

! This is bad…! This is bad…

…but at least, it is not as bad as swapping the order of row insertion and index creation. Why?…but at least, it is not as bad as swapping the order of row insertion and index creation. Why?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading
• Most DBMS provide a B+ tree bulk loading utility to reduce the cost of

operations like the one on the previous slide

69

 B+ tree bulk loading algorithm B+ tree bulk loading algorithm

1. for each record with key k in the data file, create a sorted list of pages of index leaf entries
k*
Note: for index variants ➋ or ➌ this does not imply to sort the data file itself (variant ➊
effectively creates a clustered index)

2. allocate an empty index root node and let its p0 node pointer point to the first page of the
sorted k* entries

1. for each record with key k in the data file, create a sorted list of pages of index leaf entries
k*
Note: for index variants ➋ or ➌ this does not imply to sort the data file itself (variant ➊
effectively creates a clustered index)

2. allocate an empty index root node and let its p0 node pointer point to the first page of the
sorted k* entries

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading

70

 Example: State of bulk load of a B+ tree with order d = 1 after Step 2 Example: State of bulk load of a B+ tree with order d = 1 after Step 2

Index leaf pages that are not yet in the B+ tree are framedIndex leaf pages that are not yet in the B+ tree are framed

3* 4* 6* 9* 11* 12* 13* 20* 22* 23* 31* 35* 36*10*

root node

38* 41* 44*

! B+ tree bulk loading continued! B+ tree bulk loading continued

Can you anticipate how the bulk loading process will proceed from this point?Can you anticipate how the bulk loading process will proceed from this point?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading
• As the k* are sorted, any insertion will hit the right-most index node

(just above the leaf level)
• A specialized bulk_insert(·) procedure avoids B+ tree root-to-

leaf traversals altogether

71

 B+ tree bulk loading algorithm (cont’d) B+ tree bulk loading algorithm (cont’d)

3. for each leaf level node n, insert the index entry〈minimum key on n, ↑n〉
into the right-most index node just above the leaf level

 the right-most node is filled left-to-right, splits only occur on the right-most paths from the
leaf level up to the root

3. for each leaf level node n, insert the index entry〈minimum key on n, ↑n〉
into the right-most index node just above the leaf level

 the right-most node is filled left-to-right, splits only occur on the right-most paths from the
leaf level up to the root

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading

72

 Example: State of bulk load of a B+ tree with order d = 1 (cont’d) Example: State of bulk load of a B+ tree with order d = 1 (cont’d)

3* 4* 6* 9* 11* 12* 13* 20* 22* 23* 31* 35* 36*

6 10

10*

root node

38* 41* 44*

3* 4* 6* 9* 11* 12* 13* 20* 22* 23* 31* 35* 36*

6

10* 38* 41* 44*

10

root node

12

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading

73

 Example: State of bulk load of a B+ tree with order d = 1 (cont’d) Example: State of bulk load of a B+ tree with order d = 1 (cont’d)

3* 4* 6* 9* 11* 12* 13* 20* 22* 23* 31* 35* 36*

6

10* 38* 41* 44*

10 20

root node

12 23 25

3* 4* 6* 9* 11* 12* 13* 20* 22* 23* 31* 35* 36*

6

10* 38* 41* 44*

10

root node

12 23 38

35

20

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading
• Bulk-loading is more (time) efficient

– tree traversals are saved
– less page I/O operations are necessary, i.e., buffer pool is used more effectively

• As seen in the example, bulk-loading is also more space-efficient as
all leaf nodes are filled up completely

74

! Space efficiency of bulk-loading! Space efficiency of bulk-loading

How would the resulting tree in the previous example look like, if you used the standard
insert(·) routine on the sorted list of index entries k*?
How would the resulting tree in the previous example look like, if you used the standard
insert(·) routine on the sorted list of index entries k*?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Bulk Loading
• Bulk-loading is more (time) efficient

– tree traversals are saved
– less page I/O operations are necessary, i.e., buffer pool is used more effectively

• As seen in the example, bulk-loading is also more space-efficient as
all leaf nodes are filled up completely

75

! Space efficiency of bulk-loading! Space efficiency of bulk-loading

How would the resulting tree in the previous example look like, if you used the standard
insert(·) routine on the sorted list of index entries k*?

 inserting sorted data into a B+ tree yields minimum occupancy of (only) d entries in all
nodes

How would the resulting tree in the previous example look like, if you used the standard
insert(·) routine on the sorted list of index entries k*?

 inserting sorted data into a B+ tree yields minimum occupancy of (only) d entries in all
nodes

Slides Credit: Michael Grossniklaus – Uni-Konstanz

A Note on B+ Tree Order
• Recall that B+ tree definition uses the concept of order d
• Order concept is useful for presenting B+ tree algorithms, but is hardly

every used in practical implementations
– key values may often be of variable length
– duplicates may lead to variable number of rids in an index entry k* according to

variant ➌
– leaf and non-leaf nodes may have different capacities due to index entries of

variant ➊
– key compression may introduce variable-length separator values

• Therefore, the order concept is relaxed in practice and replaced with a
physical space criterion, e.g., every node needs to be at least half-full

76Slides Credit: Michael Grossniklaus – Uni-Konstanz

A Note on Clustered Indexes
• Recall that a clustered index stores actual data records inside the

index structure (variant ➊ entries)
• In case of a B+ tree index, splitting and merging leaf nodes moves

data records from one page to another
– depending on the addressing scheme used, rid of a record may change if it is

moved to another page
– even with the TID addressing scheme (records can be moved within a pages,

uses forwarding address to deal with moves across pages), the performance
overhead may be intolerable

– some systems use the search key of the clustered index as a (location
independent) record address for other, non-clustered indexes in order to avoid
having to update other indexes or to avoid many forwards

77Slides Credit: Michael Grossniklaus – Uni-Konstanz

B+ Tree Invariants
• Order: d
• Occupancy

– each non-leaf node holds at least d and at most 2d keys
(exception: root node can hold at least 1 key)

– each leaf node holds between d and 2d index entries
• Fan-out: each non-leaf node holding m keys has m + 1 children
• Sorted order

– all nodes contain entries in ascending key-order
– child pointer pi (1 ≤ i < m) if an internal node with m keys k1, …, km leads to a sub-

tree where all keys k are ki ≤ k < ki+1
– p0 points to a sub-tree with keys k < k1 and pm to a sub-tree with keys k ≥ km

• Balance: all leaf nodes are on the same level
• Height: logFN

– N is the total number of index entries/record and F is the average fan-out
– because of high fan-out, B+ trees generally have a low height

78Slides Credit: Michael Grossniklaus – Uni-Konstanz

TO BE CONTINUED…
Database System Architecture and Implementation

79Slides Credit: Michael Grossniklaus – Uni-Konstanz

Indexes
• If the basic organization of a file does not support a specific operation,

we can additionally maintain an auxiliary structure, an index, which
adds the needed support

80

 Example Example

SELECT A, B, C
FROM R
WHERE A > 0 AND A < 100

If the file for table R is sorted on C, it cannot be used to evaluate Q more efficiently. A solution
is to add an index that supports range queries on A.

SELECT A, B, C
FROM R
WHERE A > 0 AND A < 100

If the file for table R is sorted on C, it cannot be used to evaluate Q more efficiently. A solution
is to add an index that supports range queries on A.

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Indexes
• A DBMS uses indexes like guides, where each guide is specialized to

accelerate searches on a specific attribute (or a combination of
attributes) of the records in its associated file

81

 Usage of index on attribute A Usage of index on attribute A

1. Query index for the location of a record with A = k (k is the search key)
2. The index responds with an associated index entry k*

(k* contains enough information to access the actual record in the file)
3. Read the actual record by using the guiding information in k*: the record will have an A-field

with value k.

The Small Print: Only “exact match” indexes will return records that contain the value k for field A. In the
more general case of “similarity” indexes, the records are not guaranteed to contain the value k, they are
only candidates for having this value.

1. Query index for the location of a record with A = k (k is the search key)
2. The index responds with an associated index entry k*

(k* contains enough information to access the actual record in the file)
3. Read the actual record by using the guiding information in k*: the record will have an A-field

with value k.

The Small Print: Only “exact match” indexes will return records that contain the value k for field A. In the
more general case of “similarity” indexes, the records are not guaranteed to contain the value k, they are
only candidates for having this value.

k index k* 〈…, A = k, …〉
① ② ③

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Index Entries

• Remarks
– With variant ➊, there is no need to store the data records in addition to the

index—the index itself is a special file organization
– If we build multiple indexes for a file, at most one of these should use variant ➊

to avoid redundant storage of records
– Variants ➋ and ➌ use rid(s) to point into the actual data file
– Variant ➌ leads to fewer index entries if multiple records match a search key k,

but index entries are of variable length

82

 Index Entry Design Index Entry Design

Variant Index entry k*
➊ 〈k, 〈…, A = k, …〉〉
➋ 〈k, rid〉
➌ 〈k, [rid1, rid2, …]〉

Variant Index entry k*
➊ 〈k, 〈…, A = k, …〉〉
➋ 〈k, rid〉
➌ 〈k, [rid1, rid2, …]〉

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Index Example

• Data file contains 〈name, age, sal〉 records and is hashed on age, using hash
function h1 (index entry variant ➊)

• Index file contains 〈sal, rid〉 index entries (variant ➋), pointing to data file (hash
function h2)

• This file organization plus index efficiently supports equality searches on both key
age and key sal

83

data file hashed on age

Smith, 44, 3000
Jones, 40, 6000
Tracy, 44, 5500

Ashby, 25, 3000
Bacon, 33, 4000
Bristow, 29, 2700

Casey, 50, 5500
Daniels, 22, 6000

3000
3000
5500
5500

4000
2700
6000
6000

h1 h2

index file with 〈sal, rid〉 entries

age sal

h(sal) = 0

h(sal) = 1

h(age) = 1

h(age) = 0

h(age) = 2

① ② ③ ② ①

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Clustered vs. Unclustered Indexes
• Suppose, range selections such as lower ≤ A ≤ upper need to be

supported on records of a data file
• If an index on field A is maintained, range selection queries could be

evaluated using the following algorithm
1. query the index once for a record with field A = lower
2. sequentially scan the data file from there until we encounter a record with field

A > upper

84

! Name the assumption!! Name the assumption!

Which important assumption does the above algorithm make in order for this switch from index
to data file to work efficiently?
Which important assumption does the above algorithm make in order for this switch from index
to data file to work efficiently?

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Clustered vs. Unclustered Indexes

• Remark
– in a B+ tree, for example, the index entries k* stored in the leaves are sorted on

the key k

85

 Index over data file with matching sort order Index over data file with matching sort order

root

· · ·

· · ·

· · · index file

data file

B+ tree

data records

index entries k*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Clustered vs. Unclustered Indexes

• In general, the cost for a range selection grows tremendously if the
index on A is unclustered
– proximity of index entries does not imply proximity of data records
– as before, the index can be queried for a record with A = lower
– however, to continue the scan it is necessary to revisit the index entries, which

point to data pages scattered all over the data file

• Remarks
– an index that uses entries k* of variant ➊, is clustered by definition
– a data file can have at most one clustered index (but any number of unclustered

indexes)

86

 Definition: Clustered Index Definition: Clustered Index

If the data file associated with an index is sorted on the index search key,
the index is said to be clustered
If the data file associated with an index is sorted on the index search key,
the index is said to be clustered

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Clustered vs. Unclustered Indexes

87

 Unclustered index Unclustered index

root

· · ·

· · ·

· · · index file

data file

B+ tree

data records

index entries k*

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Clustered vs. Unclustered Indexes

88

 Variant ➊ in Oracle 8i Variant ➊ in Oracle 8i

CREATE TABLE … (… PRIMARY KEY (…)) ORGANIZATION INDEX;CREATE TABLE … (… PRIMARY KEY (…)) ORGANIZATION INDEX;

 Clustered indexes in DB2 Clustered indexes in DB2

Create a clustered index IXR on table R, index key is attribute A

CREATE INDEX IXR ON R(A ASC) CLUSTER;

From the DB2 V9.5 manual
“[CLUSTER] specifies that the index is the clustering index of the table. The cluster factor of a
clustering index is maintained or improved dynamically as data is inserted into the associated table, by
attempting to insert new rows physically close to the rows for which the key values of this index are in
the same range. Only one clustering index may exist for a table so CLUSTER may not be specified if it
was used in the definition of any existing index on the table (SQLSTATE 55012). A clustering index may
not be created on a table that is defined to use append mode (SQLSTATE 428D8).”

Create a clustered index IXR on table R, index key is attribute A

CREATE INDEX IXR ON R(A ASC) CLUSTER;

From the DB2 V9.5 manual
“[CLUSTER] specifies that the index is the clustering index of the table. The cluster factor of a
clustering index is maintained or improved dynamically as data is inserted into the associated table, by
attempting to insert new rows physically close to the rows for which the key values of this index are in
the same range. Only one clustering index may exist for a table so CLUSTER may not be specified if it
was used in the definition of any existing index on the table (SQLSTATE 55012). A clustering index may
not be created on a table that is defined to use append mode (SQLSTATE 428D8).”

Slide Credit: Torsten Grust, University of Tübingen, Germany

Clustered vs. Unclustered Indexes

89

 Cluster a table based on an existing index in PostgreSQL Cluster a table based on an existing index in PostgreSQL

Reorganize the rows of table R so that their physical order matches the existing index IXR
CLUSTER R USING IXR;

• If IXR indexes attribute A of R, rows will be sorted in ascending A order
• Range queries will touch less pages, which additionally, will be physically adjacent
• Note: Generally, future insertions will compromise the perfect A order

• may issue CLUSTER R again to re-cluster
• in CREATE TABLE, use WITH(fillfactor= f), f ϵ 10…100, to reserve

space for subsequent insertions

Reorganize the rows of table R so that their physical order matches the existing index IXR
CLUSTER R USING IXR;

• If IXR indexes attribute A of R, rows will be sorted in ascending A order
• Range queries will touch less pages, which additionally, will be physically adjacent
• Note: Generally, future insertions will compromise the perfect A order

• may issue CLUSTER R again to re-cluster
• in CREATE TABLE, use WITH(fillfactor= f), f ϵ 10…100, to reserve

space for subsequent insertions

Slide Credit: Torsten Grust, University of Tübingen, Germany

• The SQL-92 and SQL-99 standard do not include any statement for the
specification (creation, dropping) of index structures
– SQL does not even require SQL systems to provide indexes at all!
– almost all SQL implementations support one or more kinds of indexes

Dense vs. Sparse Indexes
• Another advantage of a clustered index is the fact that it can be

designed to be space efficient

90

 Definition: Sparse Index Definition: Sparse Index

To keep the size of the index small, maintain one index entry k* per data file page (not one
index entry per data record). The key k is the smallest key on that page.

Indexes of this kind are called sparse. Otherwise indexes are referred to as dense.

To keep the size of the index small, maintain one index entry k* per data file page (not one
index entry per data record). The key k is the smallest key on that page.

Indexes of this kind are called sparse. Otherwise indexes are referred to as dense.

 Search a record with field A = k in a sparse A-index Search a record with field A = k in a sparse A-index

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Dense vs. Sparse Index Example

• Again, the data file contains 〈name, age, sal〉 records
• Two indexes are maintained for the data file

– clustered sparse index on field name
– unclustered dense index on field age

• Both indexes use entry variant ➋ to point into the data file

91

Smith, 44, 3000

Jones, 40, 6000

Tracy, 44, 5500

Ashby, 25, 3000
Bacon, 33, 4000
Bristow, 29, 2700

Casey, 50, 5500
Daniels, 22, 6000

22
25
29
33

40
44
44
50

Ashby
Casey
Smith

data file

sparse index
on name

dense index
on age

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Dense vs. Sparse Indexes
• Final remarks

– sparse indexes need 2-3 orders of magnitude less space that
dense indexes

– it is not possible to build a sparse index that is unclustered
(i.e., there is at most one sparse index per file)

92

! SQL queries and index exploitation! SQL queries and index exploitation

How do you propose to evaluate the following SQL queries?

• SELECT MAX(age)
FROM employees

• SELECT MAX(name)
FROM employees

How do you propose to evaluate the following SQL queries?

• SELECT MAX(age)
FROM employees

• SELECT MAX(name)
FROM employees

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Primary vs. Secondary Indexes

93

 Terminology Terminology

In the literature, there is often a distinction between primary (mostly used for indexes on the
primary key) and secondary (mostly used for indexes on other attributes) indexes.

This terminology, however, is not very uniform and some text books may use those terms for
different properties.

For example, some text books use primary to denote variant ➊ of indexes, whereas secondary is
used to characterize the other two variants ➋ and ➌.

In the literature, there is often a distinction between primary (mostly used for indexes on the
primary key) and secondary (mostly used for indexes on other attributes) indexes.

This terminology, however, is not very uniform and some text books may use those terms for
different properties.

For example, some text books use primary to denote variant ➊ of indexes, whereas secondary is
used to characterize the other two variants ➋ and ➌.

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Multi-Attribute Indexes
• Each of the indexing techniques sketched so far can be applied to a

combination of attribute values in a straightforward way
– concatenate indexed attributes to form an index key,

e.g., 〈lastname, firstname〉→ searchkey

– define index on searchkey
– index will support lookup based on both attribute values,

e.g., … WHERE lastname=‘Doe’ AND firstname=‘John’…
– possibly, it will also support lookup based on a “prefix” of values,

e.g., … WHERE lastname=‘Doe’…

• So-called multi-dimensional indexes provide support for symmetric
lookups for all subsets of the indexed attributes

• Numerous such indexes have been proposed, in particular for
geographical and geometric applications

94Slides Credit: Michael Grossniklaus – Uni-Konstanz

