
Information Systems 

Computer Science Department 
ETH Zurich 

Spring 2012 



Lecture VI: Transaction Management 
(Concurrency Control) 



An Example 

• My bank issued a debit card for me to access my account. 
• Every once in a while, I use it at an ATM to withdraw some 

money from my account, causing the ATM to perform a 
“transaction” in the bank’s database. 

• My account is properly updated to reflect the new balance. 
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Concurrent Access 
• Problem: My husband has a card for the same account, too. 

– We might end up using our cards at different ATMs at the same 
time. 
 
 
 
 
 
 
 

– The first update was lost during this execution. Lucky me!  
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Failures 
• This time, I want to transfer money over to another account. 

 
 
 
 
 
 
 

• Before the transaction gets to step 6, its execution is 
interrupted/cancelled (power outage, disk failure, software 
bug, etc.). My money is lost  . 
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ACID Properties 
• To prevent these (and many other) effects from happening, a 

DBMS must guarantee the following transactional properties: 
 

– Atomicity : Either all or none of the updates in a database  
      transaction are applied. 

– Consistency : Every transaction brings the database from one 
      consistent state to another. 

– Isolation : A transaction must not see any effect from other  
      transactions that run in parallel. 

– Durability : The effects of a successful transaction are made 
      persistent and cannot be undone for system 
      reasons. 
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Concurrency Control 
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Anomalies: Lost Update 

• The effects of one transaction are lost because of an 
uncontrolled overwriting by another transaction. 
 

• We saw an example of this anomaly in slide #4 (the 
effect of my money withdrawal transaction was 
overwritten by my husband’s). 
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Anomalies: Inconsistent Read 
• Consider the money transfer example in slide #5, 

expressed in SQL syntax: 
 
 
 
 
 
 
 

• Transaction 2 sees an inconsistent database state. 
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Anomalies: Dirty Read 
• At a different day, my husband and me again end up in front 

of two different ATMs at roughly the same time: 
 
 
 
 
 
 
 

• My husband’s transaction has already read the modified 
account balance before my transaction was rolled back. 
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Concurrent Execution 
• The scheduler decides the execution order of concurrent 

database accesses. 

ETH Zurich, Spring 2012 Information Systems 11 



Database Objects and Accesses 

• We now assume a slightly simplified model of database 
access: 
1. A database consists of a number of named objects. In a 

given database state, each object has a value. 
2. Transactions access an object o using the two operations: 

read(o) and write(o). 
 

• In a relational DBMS, we typically have that: 
   object ≡ attribute 
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Transactions 
• A database transaction T is a (strictly ordered) sequence of 

steps. Each step (si) is a pair of an access operation (ai) 
applied to an object (ei). 
– Transaction T = <s1, …,  sn> 
– Step si = (ai, ei) 
– Access operation ai є {r(ead), w(rite)} 

• The length of a transaction T is its number of steps |T| = n. 
• We could write the money transfer transaction as: 

 
 

• More concisely: 
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Schedules 
• A schedule S for a given set of transactions T = {T1, …, 

Tn} is an arbitrary sequence of execution steps 
 

 such that 
1. S contains all steps of all transactions and nothing else, and 
2. the order among steps in each transaction Tj is preserved: 

 

• We sometimes write: 
 

 to mean: 
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• One particular schedule is for the serial execution. 
– A schedule S is serial, iff for each contained transaction Tj, 

all its steps follow each other (i.e., no interleaving of 
transactions). 

• Consider again the ATM example from slide #4. 
 
 

• If my husband had gone to the bank one hour later, 
“our” schedule probably would have been serial. 

Serial Execution 
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This schedule is not serial. 



Correctness of Serial Execution 
• Anomalies such as the “lost update” problem on slide #4 

can only occur in multi-user mode. 
• If all transactions were fully executed one after another 

(no concurrency), no anomalies would occur. 
• Any serial execution is correct. 

 
• Disallowing concurrent access, however, is not practical. 
• Therefore, allow concurrent executions if they are 

“equivalent” to a serial execution. 
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Conflict Equivalence 
• What does it mean for a schedule S to be equivalent to 

another schedule S’? 
• Sometimes, we may be able to reorder steps in a schedule. 

– We must not change the order among steps of any transaction Tj. 
– Rearranging operations must not lead to a different result. 

• Two operations (a, e) and (a’, e’) are said to be in conflict 
 (a, e)        (a’, e’), if their order of execution matters. 

– When reordering a schedule, we must not change the relative 
order of such operations. 

• Any schedule S’ that can be obtained this way from S is 
said to be conflict equivalent to S. 
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Conflicts 
• Based on our read/write model, we can come up with 

a more machine-friendly definition of a conflict. 
– Two operations (Ti, a, e) and (Tj, a’, e’) are in conflict in S, if 

1. they belong to two different transactions (Ti ≠ Tj), 
2. they access the same database object, i.e., e = e’, and 
3. at least one of them is a write operation. 

– This inspires the following conflict matrix: 
 
 

– Conflict relation: 
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Conflict Serializability 
• A schedule S is conflict serializable, iff it is conflict equivalent 

to some serial schedule S’. 
• The execution of a conflict serializable schedule S is correct. 

– S does not have to be a serial schedule. 

• This allows us to prove the correctness of a schedule S based 
on its conflict graph G(S) (a.k.a., serialization graph). 
– Nodes are all transactions Ti in S. 
– There is an edge Ti → Tj , iff S contains operations (Ti, a, e) and (Tj, a’, 

e’) such that: 

 
• S is conflict serializable if G(S) is acyclic (i.e., a serial execution 

of S could be obtained by sorting G(S) topologically.) 
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Serialization Graph 
• Example: ATM transactions (slide #4) 

–   
– Conflict relation: 

 
 

• Example: Money transfers 
–   
–  Conflict relation: 
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Query Scheduling 
• Can we build a scheduler that always emits a serializable 

schedule? 
• Idea: 

– Require each transaction to 
 obtain a lock before it accesses 
 a data object o: 

 
– This prevents concurrent 
 access to o. 
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Locking 
• If a lock cannot be granted to the requesting transaction 

T (e.g., because another transaction T’ already holds a 
conflicting lock), then T gets blocked. 

• The scheduler suspends the execution of the blocked 
transaction T. 

• Once T’ releases the lock, it can be granted to T, whose 
execution is then resumed. 

• Since other transactions can continue execution while T 
is blocked, locks can be used to control the relative 
order of operations. 
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ATM Transaction Example with Locking 
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 Is locking by itself enough to guarantee serializable schedules? 



Two-Phase Locking (2PL) 

• To generate serializable histories, the locking and 
releasing operations of transactions must be 
coordinated. 

• 2PL achieves the coordination as follows: 
– A transaction must lock an object before using it. 
– When an object is locked by another transaction, the 

requesting transaction must wait. 
– Once a transaction releases any lock, it cannot request 

additional locks. 
• Any history generated by a concurrency algorithm 

that obeys the 2PL rule is serializable. 
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Two-Phase Locking (2PL) 
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Phase 1 
(Growing/Lock phase) 

Phase 2 
(Shrinking/Release phase) 



ATM Transaction Example violates 2PL 
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Making the ATM Transaction 2PL-Compliant 

• To comply with the two-phase locking protocol, the 
ATM transaction must not acquire any new locks 
after the first lock has been released. 

ETH Zurich, Spring 2012 Information Systems 27 



Resulting ATM Transaction Schedule 

 Use of locking with 2PL leads to a correct (and serializable) schedule. 
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Variants of 2PL 
• The two-phase locking protocol does not prescribe 

exactly when locks have to be acquired and released. 
• Variants are possible. Examples: 
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Cascading Rollbacks 
• Consider three transactions: 

 
 
 
 
 

• When transaction T1 aborts, transactions T2 and T3 
have already read data written by T1 (dirty read). 

• T2 and T3 need to be rolled back, too. 
• T2 and T3 cannot commit until the fate of T1 is known. 
• Strict two-phase locking avoids this problem. 
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Strict Two-Phase Locking 
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• Facilitates lock management 
• Avoids cascading aborts 



Lock Modes 
• We saw earlier that two read operations do not conflict with 

each other. 
• Systems typically use different types of locks (“lock modes”) 

to allow read operations to run concurrently. 
– read locks or shared locks: mode S 
– write locks or exclusive locks: mode X 

• Locks are only in conflict if at least one of them is an X  lock: 

 
 

• It is a safe operation in two-phase locking to convert a shared 
lock into an exclusive lock during the lock phase. 
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Deadlocks 
• Like many lock-based protocols, two-phase locking has 

the risk of deadlock situations: 
 
 
 
 
 
 
 

• Both transactions would wait for each other indefinitely. 
ETH Zurich, Spring 2012 Information Systems 33 



Deadlock Handling 
• A typical approach to deal with deadlocks is deadlock 

detection: 
– The system maintains a waits-for graph, where an edge T1 → T2 

indicates that T1 is blocked by a lock held by T2. 
– Periodically, the system tests for cycles in the graph. 
– If a cycle is detected, the deadlock is resolved by aborting one 

or more transactions. 
– Selecting the victim is a challenge: 

• Aborting young transactions may lead to starvation: the same 
transaction is cancelled again and again. 

• Aborting an old transaction may cause a lot of investment to be thrown 
away. 
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Deadlock Handling 
• Other common techniques: 

– Deadlock prevention: e.g., by handling lock requests in an 
asymmetric way: 

• Wait-Die: A transaction is never blocked by an older transaction. 
• Wound-Wait: A transaction is never blocked by a younger transaction. 

– Timeout: Only wait for a lock until a timeout expires. 
Otherwise, assume that a deadlock has occurred and abort. 

• Example: IBM DB2: 
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Implementing a Lock Manager 
• We’d like the lock manager to perform the following 

three tasks very efficiently: 
1. Check which locks are currently held for a given resource (in 

order to decide whether another lock request can be 
granted). 

2. When a lock is released, transactions that requested locks 
on the same resource have to be identified and granted the 
lock. 

3. When a transaction terminates, all held locks must be 
released. 

ETH Zurich, Spring 2012 Information Systems 36 



Granularity of Locking 
• The granularity of locking is a trade-off: 

 
 
 
 
 
 
 
 

 Idea: multi-granularity locking 
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Multi-Granularity Locking 
• Decide on the granularity of locks held for each transaction 

(depending on the characteristics of the transaction). 
– A row lock, e.g., for 

 
 

– and a table lock for 
 
 

• How do such transactions know about each others’ locks? 
– Note that locking is performance-critical. Q2 doesn’t want to do an 

extensive search for row-level conflicts. 
– Idea: Exploit the hierarchical nature of granularities. 
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Intention Locks 
• Databases use an additional type of locks: intention locks 

– Lock mode intention share: IS 
– Lock mode intention exclusive: IX 
– Conflict matrix: 

 
 
 
 
 

• A lock I*  on a coarser level means that there’s some lock *  on a 
lower level. 
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Intention Locks 
• Protocol for multi-granularity locking: 

1. A transaction can lock any granule g in * є {S , X } mode. 
2. Before a granule g can be locked in *  mode, it has to obtain 

an I*  lock on all coarser granularities that contain g. 

• Query Q1 would, e.g., 
– obtain an IS  lock on table CUSTOMERS  (also on 

tablespace and database levels), and 
– obtain an S  lock on the row with C_CUSTKEY = 42 . 

• Query Q2 would place an 
– S lock on table CUSTOMERS  (and an IS  lock on 

tablespace and database). 
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Detecting Conflicts 
• Now suppose a write query comes in: 

 
 
 
 

• It’ll want to place 
– an IX  lock on table CUSTOMER  (and tablespace and 

database), and 
– an X lock on the row holding customer 17 . 

• As such it is 
– compatible with Q1 (there’s no conflict between IX  and IS  

on the table level), 
– but incompatible with Q2 (the S  lock held by Q2 is in conflict 

with Q3’s IX  lock). 
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Consistency Guarantees and SQL 92 

• Sometimes, some degree of inconsistency may be 
acceptable for specific applications: 
– “Mistakes” in few data sets, e.g., will not considerably 

affect the outcome of an aggregate over a huge table. 
– SQL 92 specifies different isolation levels. 
– E.g., 

 
 

– Obviously, less strict consistency guarantees should lead to 
increased throughput. 
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SQL 92 Isolation Levels 

• read uncommitted (also: ‘dirty read’ or ‘browse’) 
– Only write locks are acquired according to strict 2PL. 

• read committed (also: ‘cursor stability’) 
– Read locks are only held for as long as a cursor sits on the 

particular row. Write locks acquired according to strict 2PL. 

• repeatable read (also: ‘read stability’) 
– Acquires read and write locks according to strict 2PL. 

• serializable 
– Additionally, obtains locks to avoid phantom reads. 
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Performance Comparison 
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Performance Comparison 
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Performance Comparison 
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Resulting Consistency Guarantees 

 Some implementations support more, less, or different 
levels of isolation. 

 Few applications really need serializability. 
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Phantom Problem 

• Although both transactions properly followed the 2PL 
protocol, T1 observed an effect caused by T2. 

• Cause of the problem: T1 can only lock existing rows. 
• Possible solutions: 

– Key range locking, typically in B-trees 
– Predicate locking 
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Concurrency in B-Tree Indices 

• Consider an insert transaction Tw into a B+-tree that 
resulted in a leaf node split. 
– Assume node 4 has just been split, but the new separator 

has not yet been inserted into node 1. 
– Now a concurrent read transaction Tr tries to find 8050 . 

– The (old) node 1 guides Tr to node 4. 
– Node 4 no longer contains entry 8050 , Tr believes there is 

no data item with zip code 8050 . 

– This calls for concurrency control in B-trees. 
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Insertion to a B+-tree: Example 

• Insert key 6330 . 
– Must split node 4. 
– New separator goes into node 1 

(including pointer to new page). 
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Locking and B-Tree Indices 
• Remember how we performed operations on B+-trees: 

– To search a B+-tree, we descended the tree top-down. Based on 
the content of a node n, we decided in which child n’ to continue 
the search. 

– To update a B+-tree, we 
• first did a search, 
• then inserted new data into the right leaf. 
• depending on the fullness levels of nodes, we had to split tree nodes and 

propagate splits bottom-up. 

• According to the two-phase locking protocol, we’d have to 
– obtain S/X  locks when we walk down the tree and 
– keep all locks until we’re finished. 
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Locking and B-Tree Indices 

• This strategy would seriously reduce concurrency. 
• All transactions would have to lock the tree root, which 

becomes a locking bottleneck. 
• Root node locks, effectively, serialize all (write) 

transactions. 
• Two-phase locking is not practical for B-trees. 
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Lock Coupling 
• Let us consider the write-only case first (i.e., all locks 

conflict). 
• The write-only tree locking (WTL) protocol is sufficient 

to guarantee serializability: 
1. For all tree nodes n other than the root, a transaction may 

only acquire a lock on n if it already holds a lock on n’s 
parent. 

2. Once a node n has been unlocked, the same n may not be 
locked again by the same transaction. 

• Effectively, 
– All transactions have to follow a top-down access pattern. 
– No transaction can “bypass” any other transaction along the 

same path. Conflicting transactions are thus serializable. 
– The WTL protocol is deadlock free. 
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Lock Coupling with Split Safety 
• We still have to keep as many write locks as nodes might 

be affected by node splits. 
• It is easy to check for a node n whether an update might 

affect n’s ancestors: 
– if n contains less than 2d entries, no split will propagate 

above n. 
• If n satisfies this condition, it is said to be (split) safe. 
• We can use this definition to release write locks early: 

– if, while searching top-down for an insert location, we 
encounter a safe node n, we can release locks on all of n’s 
ancestors. 

• Effectively, locks near the root are held for a shorter time. 
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The Optimistic Lock Coupling Variant 
• Even with lock coupling there’s a considerable amount 

of locks on inner tree nodes (reducing concurrency). 
• Chances that inner nodes are actually affected by 

updates are very small. 
– Back-of-the-envelope calculation: 
 d = 50 => every 50th insert causes a split (2% chance). 

• An insert transaction could thus optimistically assume 
that no leaf split is going to happen. 
– On inner nodes, only read locks acquired during tree 

navigation (plus a write lock on the affected leaf). 
– If assumption is wrong, re-traverse the tree and obtain write 

locks. 
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Discussion 
• If a leaf split happens, the writer bails out without 

having done any changes to the tree, then starts a 
whole new attempt from scratch. 

• The resulting executions are correct, even though this 
looks like re-locking some nodes (which is disallowed 
by WTL). 

• The drawback of the optimistic variant is that, in case 
of a leaf node split, it throws away all the work it 
invested in the first attempt. 

• A number of other protocol variations try to improve 
on that. 
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B+-Trees without Read Locks 
• Lehman and Yao [TODS vol. 6(4), 1981] proposed a protocol 

that does not need any read locks on B-tree nodes. 
• Requirement: a next  pointer, pointing to the right sibling. 

 
 
 

• Linked list along the leaf level. 
• Pointers provide a second path to find each node. 
• This way, mis-guided (by concurrent splits) read operations 

can still find the node that they need. 
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Optimistic Concurrency Control 

• So far, we’ve been rather pessimistic: 
– We’ve assumed the worst and prevented that from happening. 

• In practice, conflict situations are not that frequent. 
• Optimistic concurrency control: Hope for the best and 

only act in case of conflicts. 
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Optimistic Concurrency Control 

• Handle transactions in three phases: 
1. Read Phase: Execute transaction, but do not 

write data back to disk immediately. Instead, 
collect updates in a private workspace. 

2. Validation Phase: When the transaction wants 
to commit, test whether its execution was 
correct. If it is not, abort the transaction. 

3. Write Phase: Transfer data from private 
workspace into database. 
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Validating Transactions 
• Validation is typically implemented by looking at 

transactions’ 
– Read Sets RS(Ti): attributes read by transaction Ti 
– Write Sets WS(Ti): attributes written by transaction Ti 

• Backward-Oriented Optimistic Concurrency Control (BOCC): 
– Compare T against all committed transactions Tc. 
– Check succeeds if Tc committed before T started, or 

 

• Forward-Oriented Optimistic Concurrency Control (FOCC): 
– Compare T against all running transactions Tr. 
– Check succeeds if 
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Multi-version Concurrency Control 
• Consider the schedule 

 
 

• Now suppose that when T1 wants to read y, we still had 
the “old” value of y (valid at time t) around. 

• We could then create a history equivalent to 
 

 which is serializable. 
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Multi-version Concurrency Control 

• With old object versions still around, read transactions 
need no longer be blocked. 

• They might see outdated, but consistent versions of 
data. 

• Problem: Versioning requires space and management 
overhead (garbage collection). 

ETH Zurich, Spring 2012 Information Systems 62 



Multi-version Concurrency Control 
• Maintain multiple versions of each database object o, each 

with a write timestamp (WTS(o)) and a read timestamp 
(RTS(o)). 

• Transaction Ti can read the most recent version whose 
timestamp precedes TS(Ti). 

• If Ti wants to write an object o, we must ensure that o has not 
been read by another transaction Tj such that TS(Ti) < TS(Tj). 
Otherwise, Ti’s change should have been seen by Tj for 
serializability, but it’s too late for that. To handle this: 
– Whenever a transaction Tj reads an object o, the RTS(o) is set to 

max(current RTS(o), TS(Tj)). 
– If Ti wants to write an object o and TS(Ti) < RTS(o), Ti is aborted and 

restarted with a new larger timestamp. 
– Otherwise, Ti creates a new version of o (say o’), and sets RTS(o’) = 

TS(Ti) and WTS(o’) = TS(Ti). 
ETH Zurich, Spring 2012 Information Systems 63 



Summary 
• ACID and Serializability 

– To prevent from different types of anomalies, DBMSs guarantee 
ACID properties. Serializability is a sufficient criterion to guarantee 
isolation. 

• Two-Phase Locking 
– Two-phase locking is a practical technique to guarantee 

serializability. Most systems implement strict 2PL. SQL 92 allows 
explicit relaxation of the ACID isolation constraints in the interest of 
performance. 

• Other Concurrency Control Issues 
– B-trees: Specialized protocols exist for concurrency control in B-

trees (the root would be a locking bottleneck otherwise). 
– Optimistic concurrency control 
– Multi-version concurrency control 
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