
Information Systems

Computer Science Department
ETH Zurich

Spring 2012

Lecture VI: Transaction Management
(Concurrency Control)

An Example

• My bank issued a debit card for me to access my account.
• Every once in a while, I use it at an ATM to withdraw some

money from my account, causing the ATM to perform a
“transaction” in the bank’s database.

• My account is properly updated to reflect the new balance.

ETH Zurich, Spring 2012 Information Systems 3

Concurrent Access
• Problem: My husband has a card for the same account, too.

– We might end up using our cards at different ATMs at the same
time.

– The first update was lost during this execution. Lucky me! 

ETH Zurich, Spring 2012 Information Systems 4

me my husband DB state

Failures
• This time, I want to transfer money over to another account.

• Before the transaction gets to step 6, its execution is
interrupted/cancelled (power outage, disk failure, software
bug, etc.). My money is lost  .

ETH Zurich, Spring 2012 Information Systems 5

ACID Properties
• To prevent these (and many other) effects from happening, a

DBMS must guarantee the following transactional properties:

– Atomicity : Either all or none of the updates in a database
 transaction are applied.

– Consistency : Every transaction brings the database from one
 consistent state to another.

– Isolation : A transaction must not see any effect from other
 transactions that run in parallel.

– Durability : The effects of a successful transaction are made
 persistent and cannot be undone for system
 reasons.

ETH Zurich, Spring 2012 Information Systems 6

Concurrency Control

ETH Zurich, Spring 2012 Information Systems 7

Anomalies: Lost Update

• The effects of one transaction are lost because of an
uncontrolled overwriting by another transaction.

• We saw an example of this anomaly in slide #4 (the
effect of my money withdrawal transaction was
overwritten by my husband’s).

ETH Zurich, Spring 2012 Information Systems 8

Anomalies: Inconsistent Read
• Consider the money transfer example in slide #5,

expressed in SQL syntax:

• Transaction 2 sees an inconsistent database state.
ETH Zurich, Spring 2012 Information Systems 9

Anomalies: Dirty Read
• At a different day, my husband and me again end up in front

of two different ATMs at roughly the same time:

• My husband’s transaction has already read the modified
account balance before my transaction was rolled back.

ETH Zurich, Spring 2012 Information Systems 10

me my husband DB state

Concurrent Execution
• The scheduler decides the execution order of concurrent

database accesses.

ETH Zurich, Spring 2012 Information Systems 11

Database Objects and Accesses

• We now assume a slightly simplified model of database
access:
1. A database consists of a number of named objects. In a

given database state, each object has a value.
2. Transactions access an object o using the two operations:

read(o) and write(o).

• In a relational DBMS, we typically have that:
 object ≡ attribute

ETH Zurich, Spring 2012 Information Systems 12

Transactions
• A database transaction T is a (strictly ordered) sequence of

steps. Each step (si) is a pair of an access operation (ai)
applied to an object (ei).
– Transaction T = <s1, …, sn>
– Step si = (ai, ei)
– Access operation ai є {r(ead), w(rite)}

• The length of a transaction T is its number of steps |T| = n.
• We could write the money transfer transaction as:

• More concisely:

ETH Zurich, Spring 2012 Information Systems 13

Schedules
• A schedule S for a given set of transactions T = {T1, …,

Tn} is an arbitrary sequence of execution steps

 such that
1. S contains all steps of all transactions and nothing else, and
2. the order among steps in each transaction Tj is preserved:

• We sometimes write:

 to mean:

ETH Zurich, Spring 2012 Information Systems 14

• One particular schedule is for the serial execution.
– A schedule S is serial, iff for each contained transaction Tj,

all its steps follow each other (i.e., no interleaving of
transactions).

• Consider again the ATM example from slide #4.

• If my husband had gone to the bank one hour later,
“our” schedule probably would have been serial.

Serial Execution

ETH Zurich, Spring 2012 Information Systems 15

This schedule is not serial.

Correctness of Serial Execution
• Anomalies such as the “lost update” problem on slide #4

can only occur in multi-user mode.
• If all transactions were fully executed one after another

(no concurrency), no anomalies would occur.
• Any serial execution is correct.

• Disallowing concurrent access, however, is not practical.
• Therefore, allow concurrent executions if they are

“equivalent” to a serial execution.

ETH Zurich, Spring 2012 Information Systems 16

Conflict Equivalence
• What does it mean for a schedule S to be equivalent to

another schedule S’?
• Sometimes, we may be able to reorder steps in a schedule.

– We must not change the order among steps of any transaction Tj.
– Rearranging operations must not lead to a different result.

• Two operations (a, e) and (a’, e’) are said to be in conflict
 (a, e) (a’, e’), if their order of execution matters.

– When reordering a schedule, we must not change the relative
order of such operations.

• Any schedule S’ that can be obtained this way from S is
said to be conflict equivalent to S.

ETH Zurich, Spring 2012 Information Systems 17

Conflicts
• Based on our read/write model, we can come up with

a more machine-friendly definition of a conflict.
– Two operations (Ti, a, e) and (Tj, a’, e’) are in conflict in S, if

1. they belong to two different transactions (Ti ≠ Tj),
2. they access the same database object, i.e., e = e’, and
3. at least one of them is a write operation.

– This inspires the following conflict matrix:

– Conflict relation:

ETH Zurich, Spring 2012 Information Systems 18

Conflict Serializability
• A schedule S is conflict serializable, iff it is conflict equivalent

to some serial schedule S’.
• The execution of a conflict serializable schedule S is correct.

– S does not have to be a serial schedule.

• This allows us to prove the correctness of a schedule S based
on its conflict graph G(S) (a.k.a., serialization graph).
– Nodes are all transactions Ti in S.
– There is an edge Ti → Tj , iff S contains operations (Ti, a, e) and (Tj, a’,

e’) such that:

• S is conflict serializable if G(S) is acyclic (i.e., a serial execution

of S could be obtained by sorting G(S) topologically.)
ETH Zurich, Spring 2012 Information Systems 19

Serialization Graph
• Example: ATM transactions (slide #4)

–
– Conflict relation:

• Example: Money transfers
–
– Conflict relation:

ETH Zurich, Spring 2012 Information Systems 20

Query Scheduling
• Can we build a scheduler that always emits a serializable

schedule?
• Idea:

– Require each transaction to
 obtain a lock before it accesses
 a data object o:

– This prevents concurrent
 access to o.

ETH Zurich, Spring 2012 Information Systems 21

Locking
• If a lock cannot be granted to the requesting transaction

T (e.g., because another transaction T’ already holds a
conflicting lock), then T gets blocked.

• The scheduler suspends the execution of the blocked
transaction T.

• Once T’ releases the lock, it can be granted to T, whose
execution is then resumed.

• Since other transactions can continue execution while T
is blocked, locks can be used to control the relative
order of operations.

ETH Zurich, Spring 2012 Information Systems 22

ATM Transaction Example with Locking

ETH Zurich, Spring 2012 Information Systems 23

 Is locking by itself enough to guarantee serializable schedules?

Two-Phase Locking (2PL)

• To generate serializable histories, the locking and
releasing operations of transactions must be
coordinated.

• 2PL achieves the coordination as follows:
– A transaction must lock an object before using it.
– When an object is locked by another transaction, the

requesting transaction must wait.
– Once a transaction releases any lock, it cannot request

additional locks.
• Any history generated by a concurrency algorithm

that obeys the 2PL rule is serializable.

ETH Zurich, Spring 2012 Information Systems 24

Two-Phase Locking (2PL)

ETH Zurich, Spring 2012 Information Systems 25

Phase 1
(Growing/Lock phase)

Phase 2
(Shrinking/Release phase)

ATM Transaction Example violates 2PL

ETH Zurich, Spring 2012 Information Systems 26

Making the ATM Transaction 2PL-Compliant

• To comply with the two-phase locking protocol, the
ATM transaction must not acquire any new locks
after the first lock has been released.

ETH Zurich, Spring 2012 Information Systems 27

Resulting ATM Transaction Schedule

 Use of locking with 2PL leads to a correct (and serializable) schedule.

ETH Zurich, Spring 2012 Information Systems 28

Variants of 2PL
• The two-phase locking protocol does not prescribe

exactly when locks have to be acquired and released.
• Variants are possible. Examples:

ETH Zurich, Spring 2012 Information Systems 29

Cascading Rollbacks
• Consider three transactions:

• When transaction T1 aborts, transactions T2 and T3
have already read data written by T1 (dirty read).

• T2 and T3 need to be rolled back, too.
• T2 and T3 cannot commit until the fate of T1 is known.
• Strict two-phase locking avoids this problem.

ETH Zurich, Spring 2012 Information Systems 30

Strict Two-Phase Locking

ETH Zurich, Spring 2012 Information Systems 31

• Facilitates lock management
• Avoids cascading aborts

Lock Modes
• We saw earlier that two read operations do not conflict with

each other.
• Systems typically use different types of locks (“lock modes”)

to allow read operations to run concurrently.
– read locks or shared locks: mode S
– write locks or exclusive locks: mode X

• Locks are only in conflict if at least one of them is an X lock:

• It is a safe operation in two-phase locking to convert a shared
lock into an exclusive lock during the lock phase.

ETH Zurich, Spring 2012 Information Systems 32

Deadlocks
• Like many lock-based protocols, two-phase locking has

the risk of deadlock situations:

• Both transactions would wait for each other indefinitely.
ETH Zurich, Spring 2012 Information Systems 33

Deadlock Handling
• A typical approach to deal with deadlocks is deadlock

detection:
– The system maintains a waits-for graph, where an edge T1 → T2

indicates that T1 is blocked by a lock held by T2.
– Periodically, the system tests for cycles in the graph.
– If a cycle is detected, the deadlock is resolved by aborting one

or more transactions.
– Selecting the victim is a challenge:

• Aborting young transactions may lead to starvation: the same
transaction is cancelled again and again.

• Aborting an old transaction may cause a lot of investment to be thrown
away.

ETH Zurich, Spring 2012 Information Systems 34

Deadlock Handling
• Other common techniques:

– Deadlock prevention: e.g., by handling lock requests in an
asymmetric way:

• Wait-Die: A transaction is never blocked by an older transaction.
• Wound-Wait: A transaction is never blocked by a younger transaction.

– Timeout: Only wait for a lock until a timeout expires.
Otherwise, assume that a deadlock has occurred and abort.

• Example: IBM DB2:

ETH Zurich, Spring 2012 Information Systems 35

Implementing a Lock Manager
• We’d like the lock manager to perform the following

three tasks very efficiently:
1. Check which locks are currently held for a given resource (in

order to decide whether another lock request can be
granted).

2. When a lock is released, transactions that requested locks
on the same resource have to be identified and granted the
lock.

3. When a transaction terminates, all held locks must be
released.

ETH Zurich, Spring 2012 Information Systems 36

Granularity of Locking
• The granularity of locking is a trade-off:

 Idea: multi-granularity locking

ETH Zurich, Spring 2012 Information Systems 37

Multi-Granularity Locking
• Decide on the granularity of locks held for each transaction

(depending on the characteristics of the transaction).
– A row lock, e.g., for

– and a table lock for

• How do such transactions know about each others’ locks?
– Note that locking is performance-critical. Q2 doesn’t want to do an

extensive search for row-level conflicts.
– Idea: Exploit the hierarchical nature of granularities.

ETH Zurich, Spring 2012 Information Systems 38

Intention Locks
• Databases use an additional type of locks: intention locks

– Lock mode intention share: IS
– Lock mode intention exclusive: IX
– Conflict matrix:

• A lock I* on a coarser level means that there’s some lock * on a
lower level.

ETH Zurich, Spring 2012 Information Systems 39

Intention Locks
• Protocol for multi-granularity locking:

1. A transaction can lock any granule g in * є {S , X } mode.
2. Before a granule g can be locked in * mode, it has to obtain

an I* lock on all coarser granularities that contain g.

• Query Q1 would, e.g.,
– obtain an IS lock on table CUSTOMERS (also on

tablespace and database levels), and
– obtain an S lock on the row with C_CUSTKEY = 42 .

• Query Q2 would place an
– S lock on table CUSTOMERS (and an IS lock on

tablespace and database).

ETH Zurich, Spring 2012 Information Systems 40

Detecting Conflicts
• Now suppose a write query comes in:

• It’ll want to place
– an IX lock on table CUSTOMER (and tablespace and

database), and
– an X lock on the row holding customer 17 .

• As such it is
– compatible with Q1 (there’s no conflict between IX and IS

on the table level),
– but incompatible with Q2 (the S lock held by Q2 is in conflict

with Q3’s IX lock).
ETH Zurich, Spring 2012 Information Systems 41

Consistency Guarantees and SQL 92

• Sometimes, some degree of inconsistency may be
acceptable for specific applications:
– “Mistakes” in few data sets, e.g., will not considerably

affect the outcome of an aggregate over a huge table.
– SQL 92 specifies different isolation levels.
– E.g.,

– Obviously, less strict consistency guarantees should lead to
increased throughput.

ETH Zurich, Spring 2012 Information Systems 42

SQL 92 Isolation Levels

• read uncommitted (also: ‘dirty read’ or ‘browse’)
– Only write locks are acquired according to strict 2PL.

• read committed (also: ‘cursor stability’)
– Read locks are only held for as long as a cursor sits on the

particular row. Write locks acquired according to strict 2PL.

• repeatable read (also: ‘read stability’)
– Acquires read and write locks according to strict 2PL.

• serializable
– Additionally, obtains locks to avoid phantom reads.

ETH Zurich, Spring 2012 Information Systems 43

Performance Comparison

ETH Zurich, Spring 2012 Information Systems 44

Performance Comparison

ETH Zurich, Spring 2012 Information Systems 45

Performance Comparison

ETH Zurich, Spring 2012 Information Systems 46

Resulting Consistency Guarantees

 Some implementations support more, less, or different
levels of isolation.

 Few applications really need serializability.

ETH Zurich, Spring 2012 Information Systems 47

Phantom Problem

• Although both transactions properly followed the 2PL
protocol, T1 observed an effect caused by T2.

• Cause of the problem: T1 can only lock existing rows.
• Possible solutions:

– Key range locking, typically in B-trees
– Predicate locking

ETH Zurich, Spring 2012 Information Systems 48

Concurrency in B-Tree Indices

• Consider an insert transaction Tw into a B+-tree that
resulted in a leaf node split.
– Assume node 4 has just been split, but the new separator

has not yet been inserted into node 1.
– Now a concurrent read transaction Tr tries to find 8050 .

– The (old) node 1 guides Tr to node 4.
– Node 4 no longer contains entry 8050 , Tr believes there is

no data item with zip code 8050 .

– This calls for concurrency control in B-trees.

ETH Zurich, Spring 2012 Information Systems 49

Insertion to a B+-tree: Example

• Insert key 6330 .
– Must split node 4.
– New separator goes into node 1

(including pointer to new page).
ETH Zurich, Spring 2012 Information Systems 50

Locking and B-Tree Indices
• Remember how we performed operations on B+-trees:

– To search a B+-tree, we descended the tree top-down. Based on
the content of a node n, we decided in which child n’ to continue
the search.

– To update a B+-tree, we
• first did a search,
• then inserted new data into the right leaf.
• depending on the fullness levels of nodes, we had to split tree nodes and

propagate splits bottom-up.

• According to the two-phase locking protocol, we’d have to
– obtain S/X locks when we walk down the tree and
– keep all locks until we’re finished.

ETH Zurich, Spring 2012 Information Systems 51

Locking and B-Tree Indices

• This strategy would seriously reduce concurrency.
• All transactions would have to lock the tree root, which

becomes a locking bottleneck.
• Root node locks, effectively, serialize all (write)

transactions.
• Two-phase locking is not practical for B-trees.

ETH Zurich, Spring 2012 Information Systems 52

Lock Coupling
• Let us consider the write-only case first (i.e., all locks

conflict).
• The write-only tree locking (WTL) protocol is sufficient

to guarantee serializability:
1. For all tree nodes n other than the root, a transaction may

only acquire a lock on n if it already holds a lock on n’s
parent.

2. Once a node n has been unlocked, the same n may not be
locked again by the same transaction.

• Effectively,
– All transactions have to follow a top-down access pattern.
– No transaction can “bypass” any other transaction along the

same path. Conflicting transactions are thus serializable.
– The WTL protocol is deadlock free.

ETH Zurich, Spring 2012 Information Systems 53

Lock Coupling with Split Safety
• We still have to keep as many write locks as nodes might

be affected by node splits.
• It is easy to check for a node n whether an update might

affect n’s ancestors:
– if n contains less than 2d entries, no split will propagate

above n.
• If n satisfies this condition, it is said to be (split) safe.
• We can use this definition to release write locks early:

– if, while searching top-down for an insert location, we
encounter a safe node n, we can release locks on all of n’s
ancestors.

• Effectively, locks near the root are held for a shorter time.

ETH Zurich, Spring 2012 Information Systems 54

The Optimistic Lock Coupling Variant
• Even with lock coupling there’s a considerable amount

of locks on inner tree nodes (reducing concurrency).
• Chances that inner nodes are actually affected by

updates are very small.
– Back-of-the-envelope calculation:
 d = 50 => every 50th insert causes a split (2% chance).

• An insert transaction could thus optimistically assume
that no leaf split is going to happen.
– On inner nodes, only read locks acquired during tree

navigation (plus a write lock on the affected leaf).
– If assumption is wrong, re-traverse the tree and obtain write

locks.

ETH Zurich, Spring 2012 Information Systems 55

Discussion
• If a leaf split happens, the writer bails out without

having done any changes to the tree, then starts a
whole new attempt from scratch.

• The resulting executions are correct, even though this
looks like re-locking some nodes (which is disallowed
by WTL).

• The drawback of the optimistic variant is that, in case
of a leaf node split, it throws away all the work it
invested in the first attempt.

• A number of other protocol variations try to improve
on that.

ETH Zurich, Spring 2012 Information Systems 56

B+-Trees without Read Locks
• Lehman and Yao [TODS vol. 6(4), 1981] proposed a protocol

that does not need any read locks on B-tree nodes.
• Requirement: a next pointer, pointing to the right sibling.

• Linked list along the leaf level.
• Pointers provide a second path to find each node.
• This way, mis-guided (by concurrent splits) read operations

can still find the node that they need.

ETH Zurich, Spring 2012 Information Systems 57

Optimistic Concurrency Control

• So far, we’ve been rather pessimistic:
– We’ve assumed the worst and prevented that from happening.

• In practice, conflict situations are not that frequent.
• Optimistic concurrency control: Hope for the best and

only act in case of conflicts.

ETH Zurich, Spring 2012 Information Systems 58

Optimistic Concurrency Control

• Handle transactions in three phases:
1. Read Phase: Execute transaction, but do not

write data back to disk immediately. Instead,
collect updates in a private workspace.

2. Validation Phase: When the transaction wants
to commit, test whether its execution was
correct. If it is not, abort the transaction.

3. Write Phase: Transfer data from private
workspace into database.

ETH Zurich, Spring 2012 Information Systems 59

Validating Transactions
• Validation is typically implemented by looking at

transactions’
– Read Sets RS(Ti): attributes read by transaction Ti
– Write Sets WS(Ti): attributes written by transaction Ti

• Backward-Oriented Optimistic Concurrency Control (BOCC):
– Compare T against all committed transactions Tc.
– Check succeeds if Tc committed before T started, or

• Forward-Oriented Optimistic Concurrency Control (FOCC):
– Compare T against all running transactions Tr.
– Check succeeds if

ETH Zurich, Spring 2012 Information Systems 60

Multi-version Concurrency Control
• Consider the schedule

• Now suppose that when T1 wants to read y, we still had
the “old” value of y (valid at time t) around.

• We could then create a history equivalent to

 which is serializable.

ETH Zurich, Spring 2012 Information Systems 61

Multi-version Concurrency Control

• With old object versions still around, read transactions
need no longer be blocked.

• They might see outdated, but consistent versions of
data.

• Problem: Versioning requires space and management
overhead (garbage collection).

ETH Zurich, Spring 2012 Information Systems 62

Multi-version Concurrency Control
• Maintain multiple versions of each database object o, each

with a write timestamp (WTS(o)) and a read timestamp
(RTS(o)).

• Transaction Ti can read the most recent version whose
timestamp precedes TS(Ti).

• If Ti wants to write an object o, we must ensure that o has not
been read by another transaction Tj such that TS(Ti) < TS(Tj).
Otherwise, Ti’s change should have been seen by Tj for
serializability, but it’s too late for that. To handle this:
– Whenever a transaction Tj reads an object o, the RTS(o) is set to

max(current RTS(o), TS(Tj)).
– If Ti wants to write an object o and TS(Ti) < RTS(o), Ti is aborted and

restarted with a new larger timestamp.
– Otherwise, Ti creates a new version of o (say o’), and sets RTS(o’) =

TS(Ti) and WTS(o’) = TS(Ti).
ETH Zurich, Spring 2012 Information Systems 63

Summary
• ACID and Serializability

– To prevent from different types of anomalies, DBMSs guarantee
ACID properties. Serializability is a sufficient criterion to guarantee
isolation.

• Two-Phase Locking
– Two-phase locking is a practical technique to guarantee

serializability. Most systems implement strict 2PL. SQL 92 allows
explicit relaxation of the ACID isolation constraints in the interest of
performance.

• Other Concurrency Control Issues
– B-trees: Specialized protocols exist for concurrency control in B-

trees (the root would be a locking bottleneck otherwise).
– Optimistic concurrency control
– Multi-version concurrency control

ETH Zurich, Spring 2012 Information Systems 64

	Information Systems
	Lecture VI: Transaction Management (Concurrency Control)
	An Example
	Concurrent Access
	Failures
	ACID Properties
	Concurrency Control
	Anomalies: Lost Update
	Anomalies: Inconsistent Read
	Anomalies: Dirty Read
	Concurrent Execution
	Database Objects and Accesses
	Transactions
	Schedules
	Serial Execution
	Correctness of Serial Execution
	Conflict Equivalence
	Conflicts
	Conflict Serializability
	Serialization Graph
	Query Scheduling
	Locking
	ATM Transaction Example with Locking
	Two-Phase Locking (2PL)
	Two-Phase Locking (2PL)
	ATM Transaction Example violates 2PL
	Making the ATM Transaction 2PL-Compliant
	Resulting ATM Transaction Schedule
	Variants of 2PL
	Cascading Rollbacks
	Strict Two-Phase Locking
	Lock Modes
	Deadlocks
	Deadlock Handling
	Deadlock Handling
	Implementing a Lock Manager
	Granularity of Locking
	Multi-Granularity Locking
	Intention Locks
	Intention Locks
	Detecting Conflicts
	Consistency Guarantees and SQL 92
	SQL 92 Isolation Levels
	Performance Comparison
	Performance Comparison
	Performance Comparison
	Resulting Consistency Guarantees
	Phantom Problem
	Concurrency in B-Tree Indices
	Insertion to a B+-tree: Example
	Locking and B-Tree Indices
	Locking and B-Tree Indices
	Lock Coupling
	Lock Coupling with Split Safety
	The Optimistic Lock Coupling Variant
	Discussion
	B+-Trees without Read Locks
	Optimistic Concurrency Control
	Optimistic Concurrency Control
	Validating Transactions
	Multi-version Concurrency Control
	Multi-version Concurrency Control
	Multi-version Concurrency Control
	Summary

