Hashing Assignment
Database Implementation
CS 487/487 - Winter 2015

Introduction

In this assignment you will implement a static hash-based index with index entries
containing <key, rid> pairs (called alternative (2) in the slides and text). The learning
objective for this assignment is to understand firsthand how hashing and an index are
implemented.

Where to Find Code
Copy all the files from the homework page of the class website to your own local
directory. The contents are:

« bufmagr.jar, hf.jar These are jar files for the buffer manager and heapfile
packages. As in the previous assignment, you can either put these in the search
path of your compiler/IDE or use your own source code.

« bufmgr, heap: These directories are empty so that you can insert your own code
if you wish to use it instead of the given jar files .

» tests:The tests are in tests.IXTest .

« index: This contains the files referred to below. You are given the files
DataEntry.java and SortedPage.java. If you change either of them be sure to
indicate so in your README file and include it in your zip/tar file. It also includes
the skeletons HashBucketPage.java, Hashindex.java and HashScan.java .

« output.txt: as before. Passing the tests means that the last line says "completed
successfully". But if your output is different than this it suggests that | may find
something wrong with your code.

Part 1: Search Keys, Data Entries

Because you are modeling an index, you will be working with search keys. Review
global/SearchKey.java . Note that a search key consists of a type, a length and a
value,and note the getHash() method. In an index, using alternative (2), a data entry,
according to our text, consists of a search key and an RID. Review index/DataEntry.java .

Part 2: Sorted Pages

In the previous assignment you dealt with DataPages and DirPages, subtypes of
HFPages. In this assighment you will deal with pages that hold an index’s data entries. In
the BTree case these must be sorted, so they are called SortedPages. Otherwise they are
similar to the DirPages in the previous assighment. Here they do not inherit from
HFPage, they inherit directly from Page. Review index/SortedPage.java .

Part 3: Hash Bucket Pages
The pages of data entries have overflow pages and are called hash buckets. For
example, if you are indexing a "customers" table on email addresses, the search keys

may average about 25 bytes each. If the RID takes 4 bytes and the slot takes 4 bytes this
means only about 30 records can fit on one of our 1K pages. This is not a lot for a hash
bucket, especially considering the possibility of duplicates, so we want to be able to
chain sorted pages together to form a hash bucket. In order to support large amounts of
data with potential duplicates, it becomes necessary for a bucket to span multiple
pages, including one primary and possible overflow pages.

A HashBucketPage is thus an extension of a SortedPage that is part of a linked list
forming a hash bucket. Since these pages will be used only for a hash index, we will
ignore the sorted order of keys. Thus when you insert a record, you can ignore the
requirement to insert in sorted order if the page is full and you need to create an
overflow page. The skeleton is in index/HashBucketPage.java.

To Implement: index/HashBucketPage.java

Part 4: Hash Index

Hash indexes are particularly useful for equality selections, especially when used in
conjunction with certain join algorithms. The basic idea is to partition the data into
buckets, which will (hopefully) narrow down the search by a significant factor. Using the
HashBucketPage class from part 3, you will implement the static hashing index structure
described in the textbook (Section 11.1).

For this assignment, the (static) number of buckets is 128, and the hash function is
simply to consider the lower seven bits of the search key. You will find the skeleton in
index/HashIndex.java. Be sure to remember the provided getHash() method in
SearchKey.java .

To Implement: index/HashIndex.java

Part 5: Hash Scan

Scanning is of course the whole purpose of building an index. A hash scan is simply an
iterator that traverses the appropriate bucket to return all entries that match a given
search key. The skeleton is in index/HashScan.java. Your implementation of
HashScan.java should have at most one page pinned at any given time.

To Implement: index/HashScan.java

Grading & What to Turn In

Project will be graded by demonstration as with the previous assignments. You are also
required to turn in your source code. Email source code with all changed files to
tufte@pdx.edu.

