
CSE 120
PA4 Discussion

PA4
• Implement a user-level thread package

• Entirely on user-level, no kernel modification

• You will be only turning in mythreads.c, which includes following functions:

• MyInitThreads()

• MySpawnThread(func, param)

• MyYieldThread(t)

• MyGetThread()

• MySchedThread()

• MyExitThread()

InitThreads
• Partition the stack into MAXTHREADS parts

• Make use of dummy array to separate stacks of
different threads

• Needs to generalize the code in
MySpawnThread(func, param) to support partition
into MAXTHREADS parts

After partition
 …

Thread 0’s stack

s[STACKSIZE]

Thread 1’s stack

s[STACKSIZE]

Thread 2’s stack

s[STACKSIZE]

setjmp(thread[0].env)

setjmp(thread[1].env)

setjmp(thread[2].env)

Iterative Solution
for (int i=1; i< MAXTHREADS; i++)

{

char s[i*STACKSIZE]; //dummy array

Save the environment using setjmp(thread[i].env);

}

Common Mistakes
• Forgot to call setjmp(env) for thread 0.

• Referencing local variable after MyInitThread
returns.

Iterative Solution
for (int i=1; i< MAXTHREADS; i++)

{

char s[i*STACKSIZE]; //dummy array

Save the environment using setjmp(thread[i].env);

}

Thread 0’s context is not saved!

Example
for (int i=1; i< MAXTHREADS; i++)

{

char s[i*STACKSIZE]; //dummy array

if (setjmp(thread[i].env) != 0) {

 //access i

}

}

May cause segmentation fault!

Example (cont’d)
• When would

setjmp(thread[i].env) return for
the second time?

• What does the stack look like
at that point?

for (int i=1; i<MAXTHREADS; i++) {

 char s[i*STACKSIZE];

 if (setjmp(thread[i].env)!=0) {

 // access i

 }

}

When some other thread yield
to thread i.

The activation record for
MyInitThread is gone, including
the iterating variable i. It is very
likely to be overwritten by other
activation records.

Alternative
• Using Recursion

stackPartition(int number_partitions) {

if (number_of_partitions <=1) then return;

else {

 char s[STACKSIZE];

 int id = MAXTHREADS - number_partitions + 1;

 if (setjmp(thread[id].env)!=0) {

 //access id variable

 }

 …

 stackPartition(number_partitions-1);

}

}

Will we have segmentation fault here?

No

Stack Inspection
• What stack looks like

when stackPartition(5)
returns

• Each recursive call of
stackPartition() have its
own instance of id
variable. And they are
protected by the “cushion”
array s.

id in stackPartition(5)

InitThread

s[STACKSIZE]

id in stackPartition(4)

s[STACKSIZE]

id in stackPartition(3)

s[STACKSIZE]

id in stackPartition(2)

s[STACKSIZE]

id in stackPartition(1)

s[STACKSIZE]

MySpawnThread
• Incremental assignment of thread id.

• Store the function pointer and parameter in thread
table

• No need to call setjmp inside MySpawnThread
since you have partitioned the stack inside
MyInitThread

• Thread id is the index in thread table

Thread Id Example
0 T0
1 T1
2 T2
3 T3
4 T4
5 T5
6 T6
7
8
9

Thread 0 ~ 6
spawned

Thread Id

Thread Id Example
0 T0
1 T1
2 T2
3 T3
4 T4
5 T5
6
7
8
9

Thread Id T6 exits

Thread Id Example
0 T0
1 T1
2 T2
3 T3
4 T4
5 T5
6
7
8
9

Thread Id
T7 spawned

<— Last Assigned Id

T7

MyYieldThread
• Use setjmp to save the context of current thread

• Use longjmp to give up CPU to the specified
thread.

• If you pass the second parameter of longjmp(env,
t) as the current running thread id, make sure you
handle the case when current thread id is 0.

• Handle the case when yielding to a thread id that is
in range but invalid.

MySchedThread
• The FIFO queue in this assignment is different from

the one you saw in PA3 and PA2 because interior
elements can be removed.

• Reuse MyYieldThread

• Make sure MySchedThread and MyYieldThread
cooperates correctly.

Example
• One implementation:

MySchedThread() {

 int t = remove head from queue

 add current to tail;

 MyYieldThread(t);

}

MyYieldThread(t) {

 remove t from queue

 add current to tail;

 if (setjmp(thread[current].env) != 0) {

 longjmp(thread[t].env);

 }

}

• Alternative:

MySchedThread() {

 int t = head from queue

 MyYieldThread(t);

}

MyYieldThread(t) {

 remove t from queue

 add current to tail;

 if (setjmp(thread[current].env) != 0) {

 longjmp(thread[t].env);

 }

}

Since we are always going to call MyYieldThread, we can
put the logic of updating the queue inside MyYieldThread

MyYieldThread is Most
Important

• MyYieldThread()

• MySchedThread() -> MyYieldThread()

• MyExitThread() -> MySchedThread() ->
MyYieldThread()

MyExitThread
• The function to call when thread finishes execution

of the associated function.

• Always call MyExitThread() after the function
execution line in mythreads.c

• It releases the slot in thread table so threads
spawned later on can make use of that.

• Needs to reset the env to initial state (you may
need to add some variables inside thread table).

MyExitThread
• Needs to call MySchedThread in the end so other

threads can get scheduled.

• When no other threads left, call Exit() to terminate
the whole process

PA4 Verification
• If you are unsure about what the correct behavior

may be, you can always remove the “My” prefix
and make and check the output.

PA4 Questions?

File System Layout
• Divided into three regions:

• File System Metadata

- Information about file system

• File Metadata

- File control blocks

• Data Blocks

- Actual file data

File System Metadata

File Metadata

Data Blocks

File System Metadata
• Type of the file system

• The location of root directory

• How many free blocks

File System Metadata

File Metadata

Data Blocks

File Metadata
• Divided into entries

• Each entry contains a file’s
metadata:

• Attributes: file size, permissions,file type

• Block map: pointers to file data

• Filename is not stored here, why?

File System Metadata

File Metadata

Data Blocks

Data Blocks
• Actual contents of files File System Metadata

File Metadata

Data Blocks

Unix Block Map
• Which blocks on disk contain file data?

• How much metadata do we need to store to find
these blocks?

All Direct Pointers

Exercise
• Assuming using only direct pointers, and the

address is 32-bit, one block is 1KB, how much size
of disk pointers do we need to support a file of
16GB (2^34 bytes)?

16GB means 2^34/2^10 = 2^24 blocks
For each block we need to assign a pointer, which is 4
byte.
So in total, the pointer size is 4*2^24 = 2^26 bytes = 64 MB

Too much space for metadata!

Storage Overhead
• 64MB metadata for one file

• What if the file size is only 1KB?

• Direct block map is a bad idea.

• Need to handle max file size

• Most files are not at the max size

Unix Block Map
• 13 Pointers (10 direct + 3 indirect)

• 10 direct pointers, each of them points to a block

• 1 points to a block that contains pointers to N blocks. (1st
level)

• 1 points to a block that contains pointers to N 1st level blocks
(2nd level)

• 1 points to a block that contains pointers to N 2nd level blocks

• N is determined by block size

Now we can use 13 pointers (52 bytes) to support files
of size 16GB! This is much better than 64MB only using direct pointer!

