CSE 120 Discussion

Final Review
Wenjia Ouyang
03/13/2015

Announcements
* Final: Saturday, March 14

— Tomorrow!!

— 8:00am-11:00am
— Peterson Hall 108
— #2 pencil

* Sample Final on Piazza

* PLEASE fill out CAPEs !

— To fill out the form, go to cape.ucsd.edu and click
on "Fill Out Evals" on the right side of the screen.

Final Exam

 The same pattern as Midterm
— 40~60 Multiple Choice

* |t will focus much more on post-midterm
material than pre-midterm (like twice as
much).

* Projects: PA3 and PA4 (with possibly a few on
PA1 and PA2, but mostly the latter PAs).

Pre-Midterm

* Processes
e What is a process?

e Scheduling
e Synchronization
* Inter-process communication

e Deadlock

Lecture 6. slide 14
How Synchronization Works

Gate enforces mutual exclusion:
- open if no process active in monitor

- closes when process enters
\ - opens when process exits or waits

<+ Wait (cond): causes calling process to enter

WAITING waiting area and gate to re-open
AREA
—t+—> Signal (cond): causes a waiting process to re-
Multiple enter active area; signaling process must exit
processes immediately!
can be
waiting ACTIVE Only one process
AREA can be active

o

What will happen on the door if calling Signal(cond) by a
process that is inside the monitor? The door will keep close!

Lecture 6. slide 15
Issues with Monitors

* Given P, waiting on condition ¢, P, signals c
— P, and P, able to run: breaks mutual exclusion

— One solution: Signal just before returning

* Condition variables have no memory
— Signal without someone waiting does nothing
— Signal is “lost” (no memory, no future effect)
* Monitors bring structure to IPC

— Localizes critical sections and synchronization

Memory

* Memory management

* Logical vs. Physical vs. Virtual
— Logical Memory: What we’d like them to be
* Segmentation and paging
— Physical Memory: What real memory

* Frame

— Virtual Memory: lllusion of larger memory to support
multi-programming
 Page replacement algorithms

Memory management

* A program has to be in physical memory for it
to run.

e But, since we have multiple processes
running, which create and delete lot of data,
the compiler has no idea which part of
physical memory is free.

 Thus compiler generates a logical (virtual
address space) for the process from 0 to N-1.

Selecting the Best Hole

If there are multiple holes, which to select?

* Algorithms
— First (or next) fit n PA4 —?
— Best fit
— Worst fit | L, BN

* So which is best?

AR AW NN
WARWWRRNN
AR AN WMANNN
WA WA NNN
WAIMWNNN
SN

SN AN AN

AN

R
’/////////

p777777777777
V000707
V7,71

A

Yol
%4547
G e v A
VAN S

A

Consider tradeoff: fit vs. search time: g
Memory is cheap and time is expensive
- Waste memory to get speed

N \\\\\\
NRWWNNW
NRVRRIN
N \\\\\\\\\‘&N

AN AN AN AN

L

/gzzzzzz
A

7

colololociolocis

0 oo do Vo toto o /A
45504500
p o bobo o b0t o VA

Z

Lecture 8. slide 21

50% Rule

e The 50% rule formula: m=n/2

— What mis? The number of holes
— What nis? The number of allocated blocks

e That this is *average™* behavior, and not
absolutely true

— lIs it possible that there can be 100 blocks and 99
holes?

* Yes.
— Is it also possible that there are 100 blocks and O
holes?

* Yes. BUT, on average, if there are 100 blocks, there will be
50 holes.

Unused Memory Rule
f=k/(k+2)
— k=h/b, ratio of average block-to-hole size

* h:average size of holes
* b: average size of allocated blocks

— fis fraction space lost to holes

What does it mean for k to be small, << 1 (avg block size is
much larger than avg hole size)

—2f -> 0, which means no space lost to holes

What does it mean for k to be large, >> 1 (avg block size is
much smaller than avg hole size)

—>f -> 1, which means all space lost to holes

These are *average™ values

Buddy System

* Which of the following would not be a valid
chunk size in the buddy system?
A.1MB
B. 2MB
C. 3MB
D. 16 MB

Ans: C. Partition into power of 2 size chunks

* Which data structure is used to represent the
buddy system?

— Binary tree

Lecture 8. slide 42

Segmentation and Paging

* Segments—Variable sized unit of memory
— text, data, stack

* Pages—Fixed sized unit of memory access

* Which causes internal fragmentation, and
which approach would cause external
fragmentation?

— Segmentation: External fragmentation
— Paging: Internal fragmentation

Lecture 9. Slide 11

Example of Sizing the Segment Table

Segment s: 5 bits Offset i: 27 bits
I

. f
5 bits to address 2° =
32 entries L

V| Base |Bound|Perm| ...

30 bits needed to R R 27 bits needed to
address 1 GB i size up to 128 MB

—

8 bytes needed to contain |4| :: Table size =

(1+30+27+3+...) = 61+ bits 32 x 8 = 256 bytes

* Given 32 bit logical, 1 GB physical memory (max)
— 5 bit segment number, 27 bit offset

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits
: T]
20 bits to address 22° Page size =
=1 M entries L frame size =
V|DPB| Frame |Perm]|..| |2'*=4096 bytes
18 bits to address ET R 7™
239/212 frames \

4 bytes needed to contain ‘_[J : Table size =

(1+43+18+3+...) = 25+ bits 1Mx4=4MB

* Given 32 bit logical, 1 GB physical memory (max)
— 20 bit page number, 12 bit offset

* Given a 32 bit logical address, page size of 4 KB, 4 GB
physical memory:

 what s the size of each entry in the page table?
 What is the total size of the page table?

Sizing the Page Table

Logical Address

Page p Offset |
_ ‘_[B e .
Number of bits n }
specifies max size Number of bits n
of table, where = specifies page size
number of entries .* V|DPB| Frame |Perm|...
= 2" I S

l

Number of bits needed to address
physical memory in units of frames

Solution:

* Offset: # of bits to represent a page
— Page size is 4KB = offset i = 12 bits (4KB = 21?)
— Page p + offset i = logical address size
- Page p = 20 bits

* Frame bits = PM size/ Frame size

Frame size = Page size
- Frame bits = 20 bits, for 4GB/4KB = 232/212=220

* For each entry of the page table, we need:
1(V)+3(DPB)+ 20(frame)+3(permission) = 27 bits
- 4 bytes needed for each entry.
(convert it into an integer in bytes)

For the total size of the page table = each entry * # of entries
of entries = 2pasep = 220
2> 4 *220=4MB

Lecture 09: slide 40

Combining Segments and Pages

* Logical memory
composed of segments

* Each segment composed
of a set of pages

* Segment table: maps
each segment sto a
page table

* Page tables (like before)

LM

Segment
Table

Page
Tables

00000
Ay
Ay

11111111111111

L
|

4

A
e
s

11111111111111

Iy
Rl
e e
LSS

Segment/Page Address Translation

Logical Address

Segment s Page p Offset i
|
V|Base|Bound| ... Page table
of segment

*V|DPB| Frame | ... @

Physical Address | S—

Practice Final #7

TLB — Translation look aside buffer

e Used for logical to physical address lookup on chip.

— To speed up the translation, a TLB is a separate piece
of hardware that is used and operates in parallel (and
works with either paging or segmentation).

e Should be really fast.

e ATLB is normally implemented as a small fully
associative cache.

Virtual memory

* Pages are stored on disk by default, and brought
into physical memory only when needed.

* This gives us opportunity to allow pages from
multiple process to be in physical memory

* Page Fault means page not present in physical
memory, and we need to get is from the disk.

— |If valid bit is off, page fault

— Trap into kernel

Lecture 10, slide 6

Sample Contents of Page Table Entry

Valid Ref Mod Frame number Prot: rwx

 What will be (V, R, M) bits in case of a memory
read of the page?

—(1,1,0)

* |Is(1,0, 1) a valid combination?
— No

* |Is(0, 1, 1) a valid combination?
— No

Page Replacement Algorithm

1. FIFO
2. OPT
3. LRU

4. Clock Algorithm:

— Who set the reference bit to 0?
0OS

— Who set the reference bitto 17?

Hardware

Lecture 10: slide 67,68
Denning’s Working Set Model

* The working set W(t, D), which of following is not
correct?

* A.The set of pages referenced during the last D time
units

* B. Working set is a local replacement policy
* C.Compare to Clock, it is easier to implement

e Ans: C.

* Itis difficult to implement. Must timestamp pages in
working set, and must determine if timestamp older
than t-A. Also, how should A be determined?

Lecture 11
File Systems

* File system abstraction
* File system structure
* Block allocation and management

 Block cache

The Big Picture

0 File
System
1 / Metadata
2 E
= File
3 \ Metadata
4 = N\
= \
= Block /
M/
/ Data
Blocks
File Control
Blocks

(“Inode Table”)

Information about the
file system: size, bitmap

File name

/ 7 |..
32 | cat
\ 4 |dog

16 | fish

contents

of "dog”

Unix Block Map

 Fixed size
e Part of the file metadata

* Array of pointers to data blocks.

13 pointers:
— 10 direct: references 10 data blocks
— 1 singly-indirect: references N data blocks
— 1 doubly-indirect: references N2 data blocks
— 1 triply-indirect: references N3 data blocks

(N = Block Size / Pointer Size =1KB/4 Byte = 256)

We want to store a 5 KB file. How many bytes of
metadata will we need for our block map?
Assume that Block size: 1 KB (21°) and Pointer size: 4 bytes

4 * 13 =52 bytes
(

Data
Blocks

A 4

A 4

\ 4

A 4

»
>

»
>

»
>

A 4

-, ||
A: 20 byte a —> Ptrsto |
. Y Block g » Data
B: 40 byte — Ptrs to blocks
Y viap :: Single . —>

C: 52 byte — Ptrsto T " Indirect Slr?gle
D: 262)196 byte :: Double L 5 Blocks IanllreIft
(256K + 52) 7 — Indirect Double oc

|, Blocks Indirect

: Block

Triple

Indirect Block

Answer: C. 52 byte

e A5KBfileis "broken up" into 5 blocks because
each block is of size 1KB. So we need 5 pointers

for the 5 blocks.

—1s A the right answer?
4 byte *5 = 20 bytes of metadata.

* No!
— Because you have to initialize that whole block
map(13 pointers) even if you are only use a part of it.
You may think 20 of those bytes of meta data are
ACTUALLY being used, BUT you NEED 52 bytes to

represent those 5 blocks.

We want to store a 100 KB file. How many bytes of
metadata will we need for our block map?
Assume that Block size: 1 KB (21°) and Pointer size: 4 bytes

4 * 13 =52 bytes Data
| ", Blocks
A:52 -
B: 1076 b
- ||
(1KB ¥ 52)] — Ptrsto |
Block > . » Data
Map > Ptrsto blocks
C: 262,196 > Single — —
" —> .
(256K + 52) > Ptrs to indirect ~ Single
:: Double |, Blocks Indirect
iy — Indirect Double Block
D: some other |, Blocks Indirect
number Triple Block

Indirect Block

Answer: B. 1KB+52

Assume that Block size: 1 KB (21°) and Pointer size: 4 bytes

* 100 KB file = broken up into 100 data blocks

* We can use the 10 direct pointers to point 10
data blocks

= but we are still left with 90 unreferenced blocks.

* So we need to use a singly-indirect to references
N=256 data blocks. This is enough to hold those
90 pointers.

* 4 byte * 13 (block map) + 1024 byte (first level)
=52 byte + 1024 byte = 52 byte +1KB

Lecture 12

/0

e Structure of I/O system software
— Functionality of layer
— Interoperation

* Device drivers

e Buffering
— Why (and why not) buffer
— Where to buffer

PIO (programmed |0)
vs. DMA (direct memory access)

Y
S

Memory

|/O Device

~_

Want to move data
from device to memory.

Y
S

|/O Device

~_

PIO vs. DMA

Memory

Want to move data
from device to memory.

|/O Device

~_

P

O

vs. DMA

Request

Memory

P

Want to move data
from device to memory.

Am
Y
~_

|/O Device

~_

vs. DMA

Memory

P

O

vs. DMA

Want to move data
from device to memory.

D;\
Y

~_

Memory

|/O Device

~_

Want to move data
from device to memory.

|/O Device

~_

PIO vs. DMA

Request

Memory

Want to move data
from device to memory.

Y
S

|/O Device

~_

PIO vs. DMA

Data

Memory

/T@

CPU

Memory

* PIO

Controller

1/O Bus

Controller

Device

|

Device

— CPU involved in each byte/word of I/O access
— If device is slow, CPU will be wasted ---busy waiting

— Simpler, preferred for low-volume transfers
(Keyboard)

* DMA

— Move data between controller and memory
— Faster, preferred for large transfers (Disk)

How does OS get data from the 10 device

* Two options:

— Polling: Ask device repeatedly if data is ready

e Useful when device would be supplying a
continuous stream of data

—Interrupt driven: Device signals data is ready

e Useful when the input is not continuous

Lecture 12: slide 24
Example: UNIX 1/O Model

Private buffer keep in user space
* Uses file system interface Standard 1/0 Library

» stdio.h: Cstandard I/O library user

* Block devices ernel
— Fixed-size blocks File System
— Randomly addressable ¥ i
— Uses buffer cache Buffer
* Character devices | ca;he

— Variable sequence of bytes o
_ Device Drivers
— For non-block devices (Character) = (Block)

Searching the Buffer Cache

Head
LRU ‘@

+ Read (36) Ut ®

* 36%4=0 o

e Search list O .
for 36

 Cachehit! ?

Are we done? 3

| | |
W18 | " 24" 36
| | |
O * 25— 41 — 13
B30 * 34| " 42
| I‘ u
[* 27 —* 59
| ||
Hash

Table

47

Searching the Buffer Cache

LRU [

Read (36) Ut

36%4 =0 0
Search list O .
for 36

Cache hit! 2

Update LRU s
list

Head

Tail

. I

80

" 25

" 27

Hash
Table

030 >

wm_| 47

Searching the Buffer Cache

Read (15) tst m—

15%4 =3 0

Search list 3 .
for 15

Cache miss! 2

3

Head
LRU m
- -
a " 80 [11* 24 | |* 36
| —‘[T :
= " 25 [41 1 13
| 30 | 34 42
n n
] f
| " 27 |* 59 " 47
= n
Hash
Table

47

What should we do now?

Searching the Buffer Cache

Head

LRU

' O
Read (15) Ust =
15%4 =3 0 |
.] "1 80 17 24 —* 36
Search list 3 . L=
for 15 n 125 |+ 41| 13
) ‘ L . 15
Cache miss! *| | |[,,].]5, .4
- . N~
Remove 42 3 * :
) L 127 [59 [47 [15
Retrieve 15 ai " 5
Hash

Table

Protection

Security

Networks

Nictributed S

Lecture 13: slide 1-25 only

Lecture 13: slide 5

Access Control Lists and Capabilities Lists

Resources

Domains

e Access Control Lists
owner/group/world

— For each resource, list (domain, permissions) pairs

* Capability Lists

— For each domain, list (resource, permissions) pairs
X,Y

ACLs vs. Capabilities

e Access control lists (ACLs)
— Slow lookup
— Easy to manage (and revoke)
— The rwx mechanism in Unix

* Capabilities
— Fast access
— Hard to manage (revoke)
— File descriptor returned after a open system call

Public Key vs. Secret Key

e Secret key (symmetric)
— Same key K is used to encrypt and decrypt
— Operates fast
— Difficult to distribute keys

e Public key (asymmetric)
— Different keys to encrypt and decrypt
— Time consuming operation

— Convenient for key distribute

Any question?

GOOD LUCK!

