
1: For bit strings X = x1 . . . xm, Y = y1 . . . yn and Z = z1 . . . zm+n , we say that Z is an interleaving
of X and Y if it can be obtained by interleaving the bits in X and Y in a way that maintains the left-
to-right order of the bits in X and Y . For example, if X = 1101 and Y = 01 then x1x2y1x3y2x4 =
110011 is an interleaving of X and Y . Give the most efficient algorithm you can to determine if Z
is an interleaving of X and Y. (10)

Solution :

Optimal Substructure

Define z1 . . . zi+j is an interleaving of X = x1 . . . xi and Y = y1 . . . yj for 0 ≤ i ≤ m and 0 ≤ j ≤ n
Let c[i, j] be true if and only if z1 . . . zi+j is an interleaving of X = x1 . . . xi and Y = y1 . . . yj . Now,
the subproblem c[i, j] can be defined recursively as below:

c[i, j] =


true if i = j = 0
false if xi 6= zi+j ∧ yj 6= zi+j

c[i− 1, j] if xi = zi+j ∧ yj 6= zi+j

c[i, j − 1] if xi 6= zi+j ∧ yj = zi+j

c[i− 1, j] ∨ c[i, j − 1] if xi = zi+j ∧ yj = zi+j

c[m,n] gives the answer to the original problem.

Correctness Proof :
First case: when i = j = 0, both X and Y are empty and then by definition Z is also empty and
therefore, Z is a valid interleaving of X and Y .
Second case: if xi 6= zi+j and yj 6= zi+j then there is no interleaving possible and therefore it
returns false.
Third case: if xi = zi+j and yj 6= zi+j then there exist a valid interleaving of Xi and Yj in which
xi appears last, if and only if, a valid interleaving exists for Xi−1 and Yj .
Fourth case: This is symmetric to the third case.
Fifth case: When both Third, and Fourth cases are satisfied, we can find a valid interleaving of
X and Y , by extending either through the Third case or through the Fourth case.

Clearly the optimal substructure property holds, because a correct interleaving of X and Y must
contain in it correct interleaving of a subproblem involving Xi and Yj , for 0 ≤ i ≤ m, and 0 ≤ j ≤ n.

Pseudo code:

1



String-Interleaving(X[1..m], Y [1..n], Z[1..p])

1 c[0..m, 0..n] is a 2-dimensional array (default entry: false)
2 if m = n = p = 0
3 return true
4 if p 6= m + n
5 return false
6 if m == 0 and Y == Z
7 return true
8 else
9 return false

10 if n == 0 and X == Z
11 return true
12 else
13 return false
14 c[0, 0] = true;
15 for i = 1 to m
16 for j = 1 to n
17 c[i, j] = (X[i] == Z[i + j] ∧ c[i− 1, j]) ∨ (Y [j] == Z[i + j] ∧ c[i, j − 1])
18 return c[m,n]

Running Time :
There are m×n cells in the memoization table, and filling each cell takes constant time using Line
17. Therefore the time complexity is O(mn)

2


