1: For bit strings X =21... 2, Y =y1...ypand Z = 21 ... Z;m4n , we say that Z is an interleaving
of X and Y if it can be obtained by interleaving the bits in X and Y in a way that maintains the left-
to-right order of the bits in X and Y . For example, if X = 1101 and Y = 01 then z1zoy123y224 =
110011 is an interleaving of X and Y . Give the most efficient algorithm you can to determine if Z
is an interleaving of X and Y. (10)

Solution :

Optimal Substructure

Define z1 ... z4; is an interleaving of X = x1 ...z, and Y =y ...y; for 0 <i <mand 0 < j <n
Let c[i, j] be true if and only if 21 ... 2z;4; is an interleaving of X = z;...z; and Y =y, ...y;. Now,
the subproblem c[i, j] can be defined recursively as below:

true ifi=45=0

false if x; # zigj NYj # Zitj
C[i,j] = C[i — 1,j] if ¢; = Zitj NYj =+ Zit+j

cli,j — 1] if x; # zigj NYj = Zitj

cli —1,7] Vveli,j—1] if x; = zigj Nyj = 2igj

c[m, n] gives the answer to the original problem.

Correctness Proof :

First case: when ¢ = j = 0, both X and Y are empty and then by definition Z is also empty and
therefore, Z is a valid interleaving of X and Y.

Second case: if z; # z4; and y; # 2z;4; then there is no interleaving possible and therefore it
returns false.

Third case: if x; = z;; and y; # z;; then there exist a valid interleaving of X; and Y} in which
x; appears last, if and only if, a valid interleaving exists for X;_; and Yj.

Fourth case: This is symmetric to the third case.

Fifth case: When both Third, and Fourth cases are satisfied, we can find a valid interleaving of
X and Y, by extending either through the Third case or through the Fourth case.

Clearly the optimal substructure property holds, because a correct interleaving of X and Y must
contain in it correct interleaving of a subproblem involving X; and Y}, for 0 < i < m,and 0 < j < n.

Pseudo code:



STRING-INTERLEAVING(X [1..m], Y[1..n], Z[1..p])

1 ¢[0..m,0..n] is a 2-dimensional array (default entry: false)

2 ifm=n=p=0
3 return true
4 ifp#+Em+n
5 return false
6 f m==0andY ==7
7 return true
8 else
9 return false
10 if n==0and X ==
11 return true
12 else
13 return false

14 ¢[0,0] = true;

15 fori=1tom

16 forj =1ton

17 eli,j) = (X[i] == Z[i +J) Aeli = 1,7) v (Y[j] == Z[i + 1] Aclirj — 1))
18 return c¢[m,n|

Running Time :
There are m x n cells in the memoization table, and filling each cell takes constant time using Line
17. Therefore the time complexity is O(mn)



