Trends in Cyber Physical
Systems: A Historical Perspective

Systems that Interact with the
Physical World

CSE 40437/60437-Spring 2015
Prof. Dong Wang

Last Lecture

2007-now:

Cyber-Physical
Systems

Centralized
machines

o "eor,
\,’0&0 Architectyre
0. % gperS;,?,j <
T, Oy

This Lecture

* History and Origin of CPS

 Two Fundamental Challenges of
Traditional CPS

* Real-world Examples

History: The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical Systems,
November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems (HCSP-
CPS), November 30 - December 1, 2006, Alexandria, VA.

NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.

Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.

National Workshop on Composable Systems Technologies for High-Confidence Cyber-Physical
Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008, Troy,
MI.

CPSWeek, April 21-24, 2008, St. Louis, MO.

CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative

The First International Workshop on Cyber-Physical Systems, International Conference on Distributed
Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.

Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

History: The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical Systems,
November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platforms for C béglysical Systems (HCSP-
CPS), November 30 - December 1, 2006, Alexandria, VA. \

NSF Industry Round-Table on Cyber-Physical Systems, Ma w) #Arlington, VA.
Joint Workshop On High-Confidence Medical Deviqﬁ\ are, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Intero&gq > June 25-27, 2007, Boston, MA.

s Yechn

National Workshop on Composable System ologies for High-Confidence Cyber-Physical
Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008, Troy,
MI.

CPSWeek, April 21-24, 2008, St. Louis, MO.

CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative

The First International Workshop on Cyber-Physical Systems, International Conference on Distributed
Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.

Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

History: The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical Systems,
November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems (HCSP-
CPS), November 30 - December 1, 2006, Alexandria, VA.

NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.

Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.

National Workshop on Composable Systems Technologies for High-Confidence Cyber-Physical
Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cyber- Physical Systems April 3-4, 2008, Troy,
MI.

CPSWeek, April 21-24, 2008, St. Louis, MO.

CPS Summit, April 25, 2008, St. Louis, MO: NSF Annoury “PS Initiative

The First International Workshop on Cyber-Physical Internatlonal Conference on Distributed
Computing Systems (ICDCS), June 20, 2008, B%V? HINA.
3

Workshop on CPS Applications in Smart Pow ems, Raleigh, NC, 2011

Original Focus: Mission-critical Systems

Building Timely, Predictable, Reliable Systems

Two Classical Challenges

m Establish Functional Correctness: How to build
functionally correct systems from possibly
flawed components?

m Establish Temporal Correctness: What are the
analytic foundation for robust timing
guarantees in highly dynamic, time-critical
software systems?

Two Classical Challenges

m Establish Functional Correctness: How to build
functionally correct systems from possibly
flawed components?

m Establish Temporal Correctness: What are the
analytic foundation for robust timing
guarantees in highly dynamic, time-critical
software systems?

Rate of Innovation and
Development Time Issues

 Near the turn of the 20t century products
had a 20-30 year life-span before new
“versions” were developed

» At present, a product is obsolete in 2-3
years

— No time to discover and “debug” all possible
problems

— New problems introduced in new versions

— Component reuse generates additional
problems

Software: Increasingly the Primary
Cause of System Failure

 Arbitrary component interactions
unconstrained by physical laws of nature
(algorithms can do anything)

 Fast error propagation (at computing device
speed)

« Software that interacts with the physical
world is buggy!

Typical Isolation Techniques

 Abstraction
« Separation of concerns

Typical Isolation Techniques

 Abstraction
« Separation of concerns

Abstraction

N

Separate virtual machines or

protection domains

Transport
Network

Kernel
Link

Physical Virtualization

Abstraction - Solution?

« Complexity

- More levels of abstraction
- Narrower specialization

- More details are “abstracted away”

- Myopic view. Less knowledge of
possible adverse interactions
- More potential for interaction
or incompatibility errors

The Curse of Component Re-use
The Ariane 5 Explosion

« On June 4, 1996, the maiden flight of the
European Ariane 5 launcher crashed about 40
seconds after takeoff (0.5 Billion Dollars)

The Curse of Component Re-use
The Ariane 5 Explosion

« On June 4, 1996, the maiden flight of the
European Ariane 5 launcher crashed about 40
seconds after takeoff (0.5 Billion Dollars)

« Cause of problem?

— An inertial reference software component.

» Not needed during flight. Should be stopped before takeoff but
is allowed to operate for up to 50 additional seconds to avoid
expensive restarts should countdown be interrupted

« Component was designed for Ariane 4. Ariane 5 was a faster
system. Velocity variable overflowed.

« Overflow causes an exception that is not caught and crashes the
software

Example 1: Interactive Complexity
in Distributed Protocols

 Interactive complexity means:

— Simple individually insignificant failures interact
to compound into system failures, or even...

— Sets of correctly operating components interact
to produce a system failure

« Example:
— Shortest hop routing
— Adaptive rate control

Example 1:

» Shortest hop routing
— Find shorter path (fewer hops that are longer)

» Long wireless hops = poor channel quality

« Adaptive rate control
— Reduce transmission rate to improve quality

* Reduced transmission rate
- Has longer transmission range

Example 2:
Correlated failure modes between “independent
components”

» Localization (determining a node’s location) fails in
a correlated manner with failure to synchronize
clocks. Why?

— Note: None of the two components uses the other

Example 2:
Correlated failure modes between “independent
components”

» Localization (determining a node’ s location) fails in
a correlated manner with failure to synchronize

clocks. Why?
— Note: None of the two components uses the other

« Answer: communication problems. Both
subsystems rely on distributed protocols

P

Poor performance is
Compounded by two
Correlated failures

Example 3:
More on hidden interactions

« Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?

— Wind should not change magnetic sensor reading

AccuTrack

Example 3:
More on hidden interactions

« Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?

— Wind should not change magnetic sensor reading

« Explanation
— Wind caused node antenna to vibrate
— Moving (metal) antenna caused a lot of noise on
the magnetic sensor

— Noise filter adapted noise threshold to remove
background noise (and in this case the signal too)

Example 4: Three Mile Island
Nuclear Reactor Failure

March 28, 1979

Example 4: Three Mile Island
Nuclear Reactor Failure

Core temperature and pressure _
continue to build up —— Coolant pressure relief valve opens to

_ . reduce pressure -
Core overheating triggers emergency Pressure drops. Valve is stuck open.

ShUtdOV;l/nl failure indicator light t Coolant boils off. Core temperature
alve faliure indicator fight turns on 1o Raaction resumes.

but is occluded by repair tag on

another device X Core is flooded with water
Failure to open valves \

Water at very high

Open emergency feed-water pumps temperature oxidizes

from emergency tank to cool coolant
/ gency oola metal fuel rod

Heat exchange stops between coating (rusting)
primary and secondary cooling /

Systems. Primary overheats.
/ Y 4 Hydrogen is released and

. Stop secondary coolant flow and turbine eventually leads to explosion

False alarm of minor secondary system
coolant leakage through seal

Ensuring Software Correctness

« The physical world has no “reset” button
— When failures occur, they can be costly!

 Must reduce:

— Interactive complexity

» Unexpected interactions between seemingly correct
components

— Coupling

 Fast propagation of effects of failure to other system
components

Designing Complex Systems
(Example: Air-traffic control)

» Reduce interactive complexity

— Air traffic is restricted to non-intersecting
“corridors” that separate flight paths in the sky

» Reduce coupling

— Separate aircraft by a substantial distance to
reduce cascaded failure effects (think: multiple-
car pile-ups in freeway accidents)

Interaction Examples

Function calls

Resource sharing

— One module crashes - overwrites memory of another
- second “unrelated” module crashes (analogy to
physical proximity and correlated damage)

— One module is overloaded = another starves

Timing and synchronization constraints

— Precedence constraints (one module must execute
before another)

— Exclusion constraints (cannot operate at the same time)

Assumptions
— I thought you submitted our paper?
— No, I thought you did?

Question: How to Build Reliable
Software?

« Common approaches:
— Tracing, source level debugging
— Simulation/emulation
— Log and replay

Candidate Approach:
Formal Methods

« Express safety properties (e.qg., task A will never
miss its deadline)

* Prove that safety properties hold

— If proof fails, counter example is presented (a
sequence of events that leads to failure)

* Problem:

— Proofs require axioms. Axioms may make incorrect
assumptions (e.g., circular sensing range)

— Interactions must be explicitly modeled. Failure to
model interactions (e.g., between wind and magnetic
sensor) may overlook some failure modes.

Living with Buggy Systems

« If errors cannot be avoided (even using
formal methods), we must design systems to
tolerate them

— Architectures for “living with bugs”
— Fast diagnosis and recovery

— Issues
« Problem must be observable (or else cannot diagnose)

« Observation must be in time so that recovery is
possible (observing that you forgot your parachute
after you jump will not help you)

Simplicity to Conquer Complexity
Prof. Lui Sha UIUC

« Elements of a good design
— Simple safety core
— Complex enhanced mission functionality
— Formal proof of core correctness

— Well formed dependency (core may use but will
not depend on any other components)

Sha, Lui. "Using simplicity to control complexity." IEEE
Software 18.4 (2001): 20-28.

Diagnosis:
A Development-Time Data Mining Example

Run system multiple times

Log all observable interactions (messages
exchanged, resources allocated, etc)

Label execution as “correct” (no observable
problems) or “incorrect” (problems observed)

Separate logs into “good” data set and “bad”
data set

Look for sequences of events in the “good” pile
but not the “bad” pile and vice versa

Two Classical Challenges

m Establish Functional Correctness: How to build
functionally correct systems from possibly
flawed components?

m Establish Temporal Correctness: What are the
analytic foundation for robust timing
guarantees in highly dynamic, time-critical
software systems?

Real-Time
Overview

Real-Time Workload

* Job (unit of work)

— a computation, a file read, a message

transmission, etc

e Attributes

— Resources required to make progress

— Timing parameters

Released

13

Execution time

Absolute
deadline

A

Relative deadline

35

Real-Time Task

* Task : a sequence of similar jobs

— Periodic task (p,e)
* |ts jobs repeat regularly
* Period p = inter-release time (0 < p)
e Execution time e = maximum execution time (0 < e < p)
 Utilization U =¢e/p

hi- 110- 3

0

36

Deadlines: Hard vs. Soft

e Hard deadline

— Disastrous or very serious conseqguences may occur if the
deadline is missed

— Validation is essential : can all the deadlines be met, even
under worst-case scenario?

— Deterministic guarantees

* Soft deadline

— |ldeally, the deadline should be met for maximum
performance. The performance degrades in case of
deadline misses.

— Best effort approaches / statistical guarantees

Schedulability

* Property indicating whether a real-time
system (a set of real-time tasks) can meet
their deadlines

o h m =

(52)‘ o ||‘
e . .

38

Real-Time Scheduling

* Determines the order of real-time task
executions

e Static-priority scheduling

* Dynamic-priority scheduling

ol W .

52 | R R Hi‘
5 10 15
=
5 10 15

39

RM (Rate Monotonic)

* Optimal static-priority scheduling
* |t assigns priority according to period

* A task with a shorter period has a higher
priority

* Executes a job with the shortest period

T, (4,1) k o T

I
T2 (5’2) ‘ | t | |
5 10 15
T,(7,2) . .
5 10 15

RM (Rate Monotonic)

* Executes a job with the shortest period

oo Bl F o

T,652) | ! t

5 10 15
T3 (712)

5 10 15

41

RM (Rate Monotonic)

* Executes a job with the shortest period

Deadline Miss !

T(41)h h t /
52 | ‘ /1

5 10 15
T3 (7’2) | | -]]]]]]]]

42

Response Time

* Response time
— Duration from released time to finish time

T, (4,1) k - T

l
T,(52) | B l)
5 10 15
T3 (10’2) | | | | 1 o
5 10 15

Response Time

* Response time

— Duration from released time to finish time

Response Time

17

-

A

T,(4,1) . R
A
T.(52) ; T §
| 5 10 15
T,(10,2)
| 5 10 15

Response Time

* Response Time (r;) [Audsley et al., 1993]

Vi
Vi = €i + — | * Ek

P (T | Pk

* HP(T) : a set of higher-priority tasks than T,

T1(4,1)h L h . t

reolmm . fmm

5 10
T;(10,2)

5 10

RM - Schedulability Analysis

* Real-time system is schedulable under RM
if and only if r; < p.for all task T.(p,,e)

Joseph & Pandya,

“Finding response times in a real-time
system’,

The Computer Journal, 1986.

46

RM — Utilization Bound

e Real-time system is schedulable under RM if
SU. < n (2¥n-1)

Liu & Layland,

“Scheduling algorithms for multi-programming
in a hard-real-time environment”, Journal of
ACM, 1973.

47

RM — Utilization Bound

e Real-time system is schedulable under RM if
SU. < n (2V/0-1)

* Example: T,(4,1), T,(5,1), T5(10,1),
SU.=1/4+1/5+1/10

= 0.55

3 (21/3-1) = 0.78

Thus, {T,, T,, T;} is schedulable under RM.

RM — Utilization Bound

e Real-time system is schedulable under RM if
SU. < n (2Y/n-1)

* Example: T,(4,1), T,(5,2), T5(7,2),
SU.=1/4 +2/5 +2/7

= 0.94

3 (21/3-1) = 0.78

Thus, {T,, T,, T;} is NOT schedulable under RM.

RM — Utilization Bound

* Real-time system is schedulable under RM if
SU. < n (2V/0-1)

* Example: T,(4,1), T,(5,2), T5(10,2),

SU.=1/4+2/5+2/10
=0.85
3 (21/3-1) =~ 0.78

However, {T,, T,, T;}is still schedulable under RM (as we
just showed) even their total utilization is higher than

the bound!

50

RM — Utilization Bound

e Real-time system is schedulable under RM if
(but not only if) SU. < n (2V/"-1)

* The above condition is only a sufficient but
not necessary condition!
— We only know tasks with utilization lower than

the bound is guaranteed to be schedulable under
RM.

— We know nothing about tasks with higher
utilization!

RM — Utilization Bound

e Real-time system is schedulable under RM if
SU. < n (2V/0-1)

Utilization

1.1

0.9
0.8
0.7
0.6
0.5

RM Utilization Bounds

:
.

1

4 16 64 256 1024 4096

The Number of Tasks

EDF (Earliest Deadline First)

* Optimal dynamic priority scheduling

* A task with a shorter deadline has a higher
priority

* Executes a job with the earliest deadline

T, (4,1) k - T

|
T,(52) | B l)
5 10 15
T3 (712) | R
5 10 15

EDF (Earliest Deadline First)

* Executes a job with the earliest deadline

=
q

T, (4,1) h

e
q—

T,(5,2) l

T5(7,2)

EDF (Earliest Deadline First)

* Executes a job with the earliest deadline

renl . W b

e

T,(5,2) l | t

i

5 10

nr2 |

5 10

55

EDF (Earliest Deadline First)

* Executes a job with the earliest deadline

T1(4,1)h | i N
nea | K
noa| i

EDF (Earliest Deadline First)

* Optimal scheduling algorithm
— if there is a schedule for a set of real-time tasks,
EDF can schedule it.

T1(4,1)h||¢- htL
T,652) |] o 1

5 10 15

B2y I

5 10 15

EDF — Utilization Bound

* Real-time system is schedulable under EDF if
and only if

SU <1

Liu & Layland,

“Scheduling algorithms for multi-programming
in a hard-real-time environment”, Journal of
ACM, 1973.

58

EDF — Overload Conditions

* Domino effect during overload conditions
— Example: T,(4,3), T,(5,3), T5(6,3), T,(7,3)

Deadline Miss |

59

RM vs. EDF

e Rate Monotonic

— Simpler implementation, even in systems without
explicit support for timing constraints (periods,
deadlines)

— Predictability for the highest priority tasks
* EDF

— Full processor utilization

— Misbehavior during overload conditions

* For more details: Buttazzo, “Rate monotonic vs. EDF:
Judgement Day”, EMSOFT 2003.

Real-world Example: What Happens
on Mars?

Prof. Lui Sha,
CS, UIUC

Priority Inheritance and
Priority Ceiling Protocols

L. Sha, R. Rajkumar, and J. P. Lehoczky,
"Priority Inheritance Protocols: An
Approach to Real-Time Synchronization",
IEEE Transactions on Computers, Vol. 39,
No. 9, Sept. 1990.

http://research.microsoft.com/en-us/um/people/mbj/Mars Pathfinder/Mars Pathfinder.html

The Problem

e Tasks have synchronization constraints
— Semaphores protect critical sections

* Blocking can cause a higher-priority task to wait
on an lower-priority one to unlock the resource
— Problem: In all previous scheduling examples, we

assumed that a task can only wait for higher priority
tasks not lower-priority tasks

Mutual Exclusion Constraints

* Tasks that lock/unlock the same semaphore
are said to have a mutual exclusion constraint

Lock S Unlock S

TaSk 1l—i |]]]]]] | | | o
\ Critical Sections

(Mutually exclusive)

Task 2

Lock S Unlock S

Priority Inversion

* Locks and priorities may be at odds. Locking
results in priority inversion.

High-priority Task
L | |

Lock S

\ Preempt
__ B

Low-priority Task

Priority Inversion

* Locks and priorities may be at odds. Locking

results in priority inversion.

Attempt to Lock S but
results in blocking

PR

High-priority Task
L |

Lock S I :
\ Preempt| Priority Inversion

Low-priority Task

Priority Inversion

* How to account for priority inversion?

Attempt to Lock S but
results in blocking

High-priority Task
[| | 2 | R | >
Lock S Lock S Unlock S
\ Preempt| Priprity Inversion
4
Low-priority Task T

Unlock S

Priority Inversion

 What is the problem of this scheme? Can the

high-priority task gets delayed unboundedly?

Attempt to Lock S but
results in blocking

—

Lock S Lock S Unlock S

\ Preempt| Priprity Inversion

\4

Low-priority Task T

High-priority Task
L | |

Unlock S

Unbounded Priority Inversion

* Consider the following: a series of intermediate
priority tasks is delaying a higher-priority one

Attempt to Lock S but
results in blocking

J -

| | | | | | [
>

High-priority Task
L |

Unbounded priority inversion

Preempt

Intermediate-priority Task
L | | |

Lock S

\ ! Preempt

Low-priority Task T

Unlock S

Unbounded Priority Inversion

* Consider the following: a series of intermediate
priority tasks is delaying a higher-priority one

Attempt to Lock S but
results in blocking

High-priority Tas
L | | | | | | | L »

% The root cause of the @Mitv inversion
iorit

Intermediate-pr Mars Pathfinder [| ™7
restarting problem!

Low-priority Task T

Unlock S

Unbounded Priority Inversion
* How to prevent unbounded priority inversion?

Attempt to Lock S but
results in blocking

J -

| | | | | | [
>

High-priority Task
L |

Unbounded priority inversion

Preempt

Intermediate-priority Task
L | | |

Lock S

\ ! Preempt

Low-priority Task T

Unlock S

Priority Inheritance Protocol

* Let a task inherit the priority of any higher priority

task it is blocking

Attempt to Lock S but
results in blocking

High-priority Task i
Preempt
Intermediate-priority Task)
Lock S \

\ \Priority Inherit
Low-priority Task \

Unlock S

Deadlocks in PIP

Do V(S,) o VS,),.0)

crossing nested

Jy = {ooes P(S)) ooy P(Sy)rcs V(S,) ot VIS))von.} semaphores

(try to lock S1)
preempt J2 lock S2 blocked by J2
: A
lock S1 ! ! : (try to lock S2)

+ blocked by J1

':f """" > deadlock!

time | | | | | | -

INs in PIP

Blocking Cha

}

L P(S,), o, AS,), ...

. V(S)), -

J,={.., P(S)), ..

}

L V(S,), ..

[, P(Sy), ..

J2=

)
e
2
o
€
o]
s -
x
(8]
25
c
S
. —
— 2
(8]
a ov
£
-2
So
Te -
~
Q0
€O
Vo |=X
(8]
£° |3,
S -
X
-
Swn
-
Qe
>
L3
. -
. o =<
. (8]
€0
~ E
%) &
~
-
~
2}
R
{

J3=

preempt J3

t10 t1l t12 t13

t7 t8 t9

t4 15 6

t2 t3

t0 tl

Priority Ceiling Protocol (PCP)

e Goals:

— Solve problems of PIP.
* Prevent deadlocks and blocking chains

e Basicidea:

— Priority ceiling of a semaphore:

* The priority of the highest priority task that may use the
semaphore
— Additional condition for allowing a job J to start a new
critical section
* only if J's priority is higher than all priority ceilings of all
the semaphores locked by jobs other than J .

Examples for PCP (1/2)

e Prevent deadlocks
J,={..., P(Sy) ..., V(Sp)....}
Ceiling(S0)=H

.. » nested Crossing

J;=1.., P(S,) ..., P(S)),. Sy S,),..} semaphores Ceiling(S1)= M
lock SO unlock SO CEIIIng(SZ)= M
|
preemptJ3 l i coTpIete
Ji & lock S2 unlock S2
reempt J3 (atterr'I:pt to Io:ck S1) I I
P Ii blotked by J3 | : lock S1 “"'°$k 51* complete
J, | | i
Iock+SZ i i i i lock S1 nlock S1 I unII.:ck 2 | I com:lete
|
T

I |
T T
4

I I I
I I I
5 t6 7 8 19 110 11 12 3 14 115

Real-Time
Overview

Further Reading

e Buttazzo, Giorgio C. Hard real-time computing
systems: predictable scheduling algorithms
and applications. Vol. 24. Springer, 2011.

Giorgio C. Buttazzo

Hard Real-Time
Computing

Open Cyber-Physical Systems

Safety-critical
A

<€ >
Non Real-time Hard Real-time

A 4
Non-critical

78

Open Cyber-Physical Systems

Safety-critical
A

Model checking
Formal verification
Worst-case analysis
Certification

< >
Non Real-time Hard Real-time

v 79
Non-critical

Open Cyber-Physical Systems

Safety-critical
A

checking
ormal verification
Worst-case analysis
Certification

<
Non Real-time

>
Hard Real-time

\ 4 80
Non-critical

Open Cyber-Physical Systems

Safety-critical

Non Real-time

>

v
Non-critical

Hard Real-time

81

Open Cyber-Physical Systems

Safety-critical

- Data reliability
- Large scale
- Distributed ownership

- Imprecise/Incomplete models
<

Non Real-time

>
Hard Real-time

v
Non-critical

82

Personalized Healthcare "< <

Sanitized
ommunity

0> Community/Social

Network
Providers, />/v Socia

Physicians Factors

Context Factors,
Bio-feedback

[L1

Personal Data
Services

Logging

Implantable Biological :
Medical Devices, System
Biosensors

Wearable and Ambient context and
Sensors: Opportunistic Activity Sensing,
Context Measurement NEAT-factor, etc.

Body-Area Networks

"

Micro- and Nano-
sensors, Biochips

Point of Care

Bio-feedback Sensors Devices

Implanted Sensors
nsulin pumps, pacemakers,
glucose monitors, ...

Weal‘able ACtiVity A Transparent
and Biometric Monitoring Smart Spaces Testing

Crowd-sensing
Browsing the Physical World

Feng Zhao http://research.microsoft.com/en-us/projects/senseweb/

I Q Morningsica Juanits Vi

: Port Madison g),]
, — Sesnod : . o
2, Villingén-Schwennid @ @ Whittig ©) | Maplokoat 8
} N\ B - = Haighy > |- Lavila
\»\J - Matume
4

’ |
)

) Freiburg Black
Mulhouse Forest Mearzania N

= Kirkl nq y —

; B ~",-O\ S A v .mve’ | . Rosg Hill_ (908

ot allort a 3, 3 . b - Md<— : r b
rnnx\ Faucilles i 3 ~ olenc.e‘ < RJII:rd.xn ; ‘t = °
‘ ot Uniy

.

"
~0
g

UOSS '{\

-.‘ ‘f

"\J\

Basel ‘ Univarsiy Eorton
: Montbéliard §- ", Basel % Vila anton
o "7 Basle; = ‘ AL 5

Srwy
Mrn tou Ecﬂ.h

~ oo R Lanton ity of v.'-iougt‘ld |
; % —— :-. Magnclia Bluff Washingion Yoz Po w

Fletcher Bay S erncliff P Edguwalﬂf Park~ H P ll

. 2 Neomalt way MR \"%_r.m_
a =
5 painbridge |s|and C‘ﬁx ,
K o P &
Thuttn$, £, Jhe¥estwood Creosote oo Elliolt Bay Medina, N 3@—
= : e ! . &,a.,m = e (© o o
BERN \Jd cf':'aalecae -LBayfn, frU‘?e st te e 18
FRIBOI'JRG 3\,1 5, : &S Pt Blske .- _ r)"’;“"‘I‘/ Lake Washington
= I’n.lnv.u T lirren Ihd'ao . . Y : : ’ S8, F!‘(G’IOKP
. P vWauL—:u»)d Beach

‘atrace ﬁ_m, l
M1 Baker S
Mercer
| Ilsland

Y} ‘3@(‘ /
L (99| V& Assel Bright” s Hazowoodop 7
an Beach pafk‘, J be R o sercer u 'Pires

\Weodormon

: N
\ y ; AL Island o
o ! - 4 : \ May Creak
m B cea=oz2snes U Kannydale
SLiner K ‘ " LAY
@ & Amony Ave & Arroyc Heights_ e) Bryn Mawr
L [W Hes:ms“\ | \
- B_Vd ' | E Peabody Shd‘owoodn gcu avard ~, @ JSkV\Va)‘ Iy
'l L JRives ®
~ Inglesen .
Colvos . 9 sEvansuilia Footer Renton

Military Situation Awareness
Applications

. Prioritized
Information _ Situation-awareness [J @
Network Information

l e et
[)
i T V-V«J.?a.,l

Quantifiable |*
uncertainty L=

Optimize
resource

Extract
objects and

linkages

Extract
&> objects and

" linkages
Signal data

Feedback
to sensor and

communication)
Sensors, witnesses, sources, ...
networks

Social
networks)

86

An Architecture for Open CPS

Critical
Services

An Architecture for Open CPS

Mobiles

Critical
Services

——fah
)
&y
=
T
—
= A N
B Incicov2 -
v
O

An Architecture for Open CPS

Critical
Services

Sensors

An Architecture for Open CPS

Critical
Services

Sensors

Publication Venues

Cyber-physical systems

— International conference on cyber-physical systems (ICCPS)

— CPSWeek (http://www.cpsweek.org)

Real-time systems

— IEEE Real-time systems symposium (IEEE RTSS)

— IEEE Real-time applications symposium (IEEE RTAS)

— Springer Journal on Real-time Systems

Embedded systems

— International conference on embedded software (EmSoft)

— ACM Transactions on Embedded Computing Systems (ACM TECS)

Networked sensing

— ACM Sensys (http://sensys.acm.org/2014/index.html)
— ACM/IEEE IPSN (http://ipsn.acm.org/2015/)

— ACM Transactions on Sensor Networks (ACM ToSN)

Publication Venues (Cont.)

« Data Analytics, Mining and Processing
— ACM KDD Conference on Knowledge Discovery and Data Mining
(http://www.kdd.org/kdd2015/)
— IEEE International Conference on Data Mining (ICDE)
(http://icdm2014.sfu.ca/home.html)

— ACM International Conference on Web Search and Data Mining
(http://www.wsdm-conference.org/2015/)

— International World Wide Web Conference (WWW)
(http://www.www?2015.it/)

— IEEE Transactions on Knowledge and Data Engineering (TKDE)
(http://www.computer.org/portal/web/tkde)

Education Venues

« Nano-Tera/Artist Summer School on Embedded
System Design
— http://artist-summer-school.epfl.ch/
» Georgia Tech Summer School on Cyber Physical

Systems
— http://users.ece.gatech.edu/~magnus/CPSschool.html

The CPS Research Landscape
(An Incomplete List, Alphabetic)

Berkeley (architecture, control, automotive, sensor networks, ...):
— http://chess.eecs.berkeley.edu/

CMU (real-time, automotive, ...):

— http://users.ece.cmu.edu/~raj/

Notre Dame (social sensing, CPS in social space)

— http://www3.nd.edu/~dwang5/

UIUC (avionics, human-centric, medical, ...)

— http://publish.illinois.edu/cpsintegrationlab/

U. of Pennsylvania (composability, medical, ...)

— http://precise.seas.upenn.edu/

University of Virginia (sensor networks, real-time, ...)
— http://www.cs.virginia.edu/~stankovic/rts.html

Vanderbilt (composition, control, ...)
— http://www.isis.vanderbilt.edu/research/NES

Pointers and Readings

"Opportunities and Obligations for Physical Computing Systems", Computer, Volume 38, Issue
11, November 2005, pages 23-31. (Report produced by a Workshop at the IEEE Real-Time
Systems Symposium, December 2003).

http://repository.upenn.edu/cis_papers/222/
"High Confidence Medical Device Software and Systems (HCMDSS)" Workshop, June 2 - 3,
2005, Philadelphia, PA.

http://rtg.cis.upenn.edu/hcmdss/index.php3

National Workshop on "Aviation Software Systems: Design for Certifiably Dependable
Systems", October 5-6, 2006, Alexandria, TX

http://chess.eecs.berkeley.edu/hcssas/index.html
NSF Workshop on "Cyber-Physical Systems", October 16-17, 2006, Austin, TX.
http://varma.ece.cmu.edu/CPS

National Workshop on "High-Confidence Software Platforms for Cyber-Physical Systems
(HCSP-CPS)", November 30 - December 1, 2006, Alexandria, VA.

http://www.isis.vanderbilt.edu/HCSP-CPS/

Pointers and Readings

"Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interoperability”, June 25-27, 2007, Boston, MA.

http://rtg.cis.upenn.edu/hcmdss07/index.php3
National Workshop on "Composable and Systems Technologies for High-Confidence Cyber-Physical
Systems", July 9-10, 2007, Arlington, VA.

http://www.isis.vanderbilt.edu/CST-HCCPS/

National Workshop on "High-Confidence Automotive Cyber-Physical Systems”, Apr 3-4, 2008, Troy,
MI.

http://varma.ece.cmu.edu/Auto-CPS/
CPSWeek, 2008-present
http://www.cpsweek.org/
CPS Summit, April 25, 2008, St. Louis, MO, USA.
http://varma.ece.cmu.edu/Summit

National Workshop on "Research on Transportation Cyber-Physical Systems: Automotive, Aviation,
and Rail", November 18-20, 2008, Washington, DC (USA).

http://www.ee.washington.edu/research/nsl/aar-cps

