Online Social Media Sensing 2: Geo-location and Redundant Content

CSE 40437/60437-Spring 2015 Prof. Dong Wang

Papers discuss today

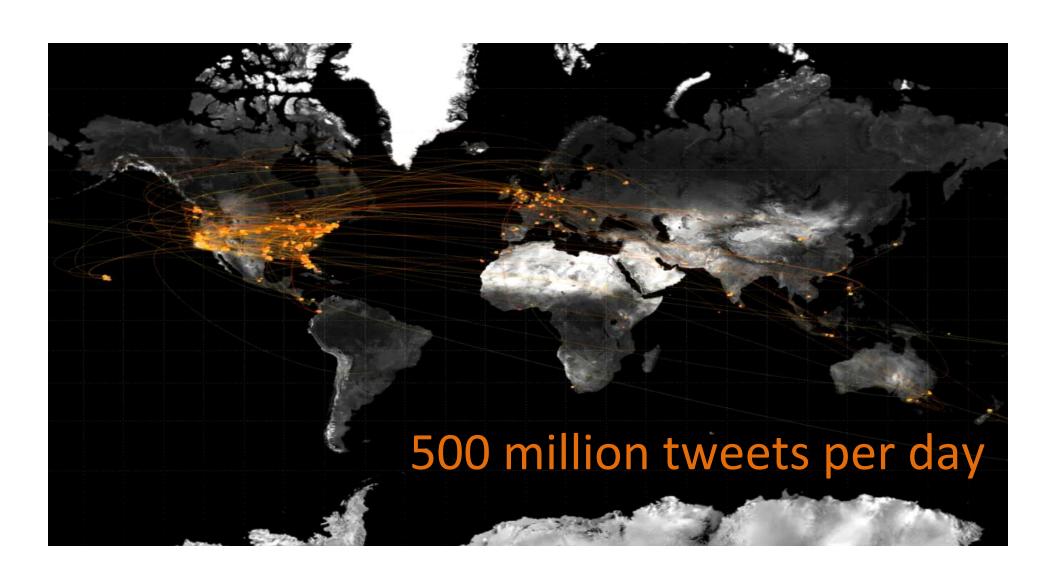
Paper 3: "You are where you tweet: a content-based approach to geo-locating twitter users." Cheng, Zhiyuan, et. al. Proceedings of the 19th ACM international conference on Information and knowledge management. ACM, 2010.

Paper 4: "From tweets to polls: Linking text sentiment to public opinion time series." O'Connor, Brendan, et al. ICWSM 11 (2010): 122-129.

Geo-locations of Tweets

Paper 3: "You are where you tweet: a content-based approach to geo-locating twitter users." Cheng, Zhiyuan, et. al. Proceedings of the 19th ACM international conference on Information and knowledge management. ACM, 2010.

The Promise: Twitter as "human" sensing

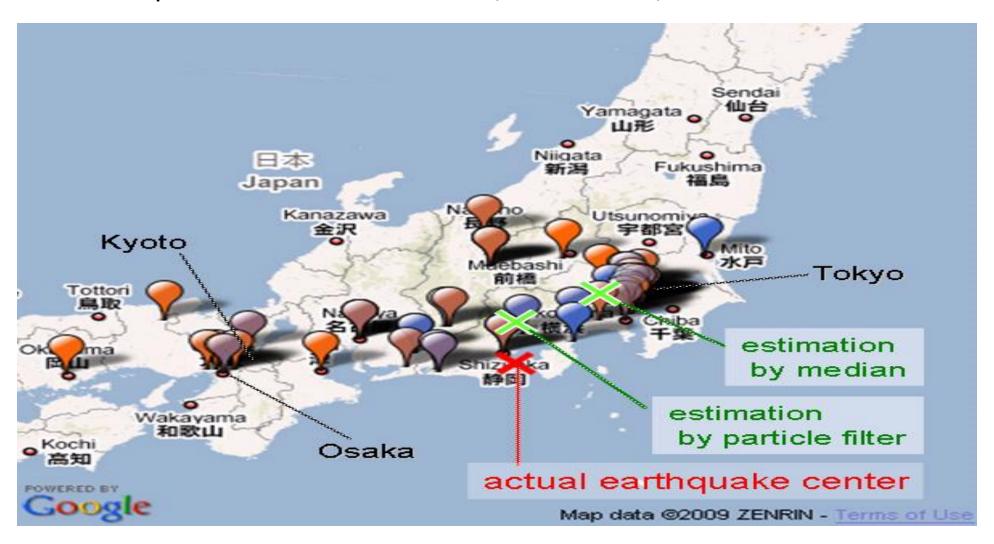


Question to think

- How would you use the geo-location information of the twitter users or tweets if they are available?
- What are the pros and cons of using such geoinformation?

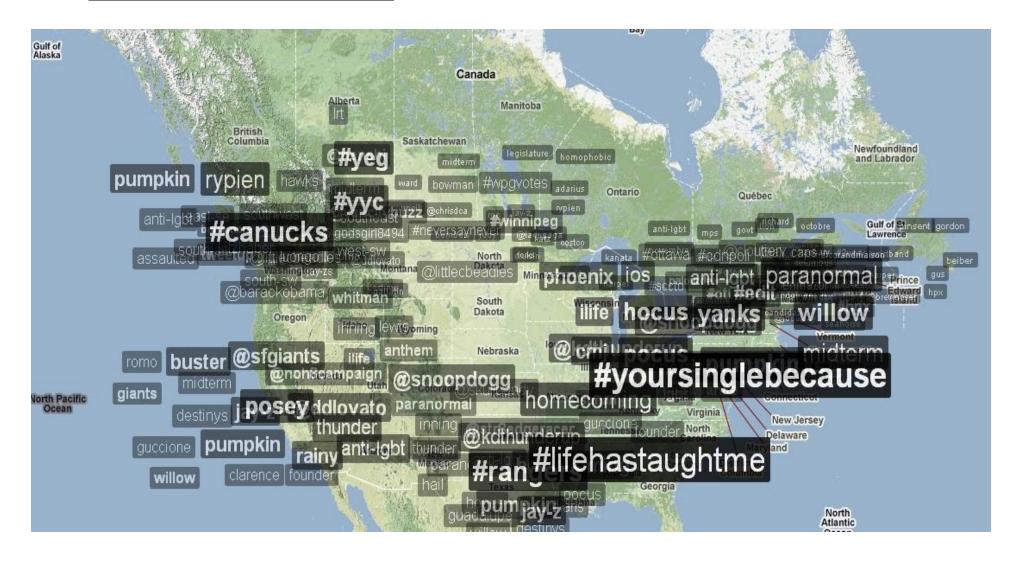
Example: Earthquake Detection

•Earthquake shakes Twitter users, Sakaki et al, WWW 2010



Example: Buzz Tracking

•http://trendsmap.com/



And on and on ...

- New personalized location-based information services
 - Local news service based on Twitter
 - Targeting Ads based on user's geo-location
- Emergency management:
 - Project EPIC at UC-Boulder: (http://epic.cs.colorado.edu/)
 - Earthquake and fires detection
- Tracking the diffusion of infectious diseases
 - Google Flue-Trend like service based on Twitter

But ... Location Sparsity is a Severe Problem

- •Dataset:
 - •Random sampling from public timeline.
 - •BFS sampling from 20 random seeds.
 - •→ 1M user profiles and 30M tweets

- Only 21% of users list a location as granular as a city name
- •Only 5% of users list a location as granular as latitude/longitude coordinates
- Rest are overly general, missing, or nonsensical
 - "California", "worldwide", "Wonderland" ...

But ... Location Sparsity is a Severe Problem

```
"text": "Time for the States to fight back !!!
                                                   Tenth Amendment Movement: Taking On the
Feds http://bit.ly/14t1RV #tcot #teaparty",
   "created at": "Tue Nov 17 21:08:39 +0000 2009",
   "geo": null,
   "id": 5806348114,
   "in_reply_to_screen_name": null,
   "in_reply_to_status_id": null,
   "user": {
       "screen_name": "TPO_News",
       "created_at": "Fri May 15 04:16:38 +0000 2009",
       "description": "Child of God - Married - Gun carrying NRA Conservative - Right Winger
hard Core Anti Obama (Pro America), Parrothead - www.ABoldStepBack.com #tcot #nra #iPhone",
          Only 0.42% of tweets contain geocodes (i.e.,
                   geo/coordinate field of a tweet)
TP0_Ba
       "protected": false,
       "statuses_count": 21147,
       "location": "Las Vegas, Baby!!",
       "time_zone": "Pacific Time (US & Canada)",
       "url": "http://www.tpo.net/1dollar",
       "utc_offset": -28800,
```

Goal: Predict Twitter User Location at a City Level

Requirements:

- •Generalizable across social media sites and future human-centric sensing systems
- Provide accurate and reliable location estimation
- •No need for proprietary data from system operators (e.g., backend database) or privacy-sensitive data from users (e.g., IP or user/pass)

WHERE ARE YOU?

• Approach:

Based purely on public content posted by user

Challenges

 What are the challenges of doing contentbased location estimation for Twitter data?

•Tweets are noisy, mixing a variety of daily interests.

TheRealCaverlee James Caverlee
More like this, please. White House science fair: http://bit.ly/9bKl7h

Science Activity

TheRealCaverlee James Caverlee C++ celebrates 25th anniv of its first commercial release today! http://bit.ly/dnBahg Congrats Dr. Stroustrup! #C++ #TAMU (via @CSE at TAMU)

C++

TheRealCaverlee James Caverlee

@jelsas I read that as #applausability. I am clapping for your tweet, I guess.

Conversation

12 Oct

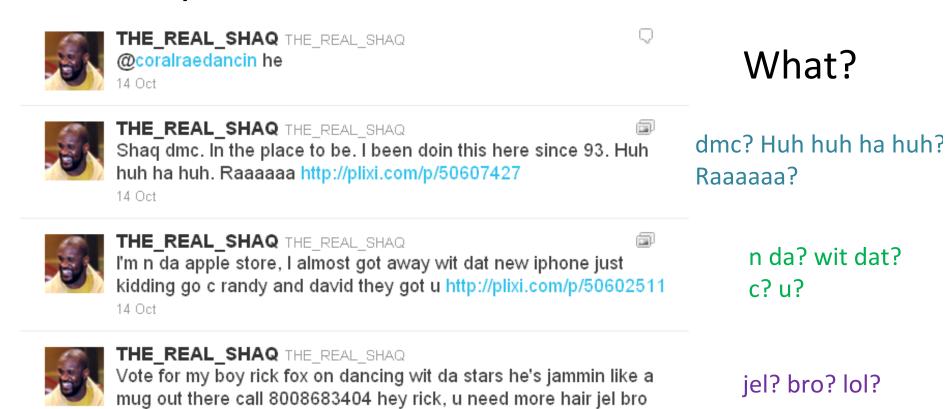
14 Oct.

TheRealCaverlee James Caverlee
Off to CollaborateCom in Chicago. Good start already: there's a
Papasito's in concourse E at IAH!

Travel

 Prevalence of shorthand and non standard vocabulary for informal communication

> lol 11 Oct



 A user may have interests that span multiple locations beyond their immediate home location

infolaber Zhiyuan Cheng

Things that impressed me in today's Ag's gm: loyalty of Ag alumni, wt of players, loudness of the F18s' fly-over, scores we got in half time

16 Oct

Texas A&M?

infolaber Zhiyuan Cheng

@bde It's interesting to know that Ada was a daughter of Byron's... educated by reading the Wiki page.

12.0~

infolaber Zhiyuan Cheng

@Peterkayame Dude, can I ask you a quick question? Were you in San Francisco recently? Thanks a lot~

12 Oct

San Francisco??

infolaber Zhiyuan Cheng

Just finished the first English lecture ever in my life talking about Hubs & Authorities. It feels good to help guys learn something.

12 Oct

infolaber Zhiyuan Cheng

Got an email from a guy in Serbia asking for source code and all the documents for my database project... #SmallWorld

11 Oct.

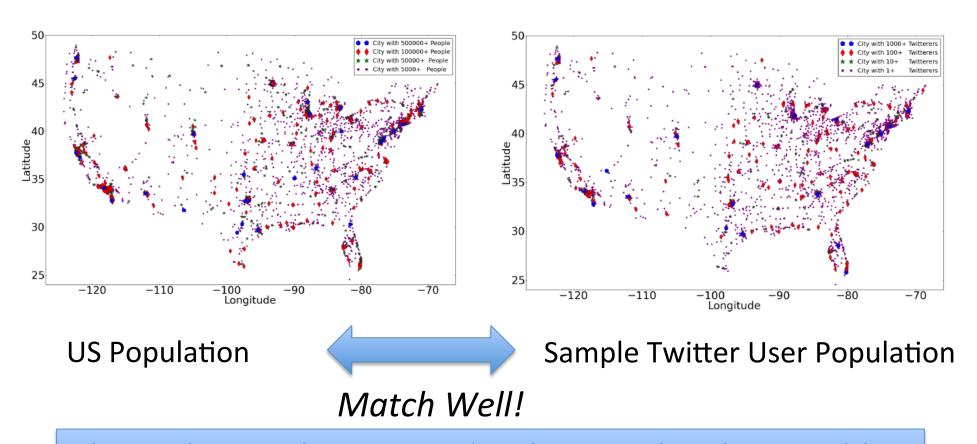
Serbia???

•A user may have more than one natural location, e.g., travel, commute, etc.

Training Datasets

- Focus on users within the continental U.S.
- Using city names in Census 2000 U.S. Gazetter to filter user profile with valid city names
- For ambiguous city names, only consider "Cityname, StateName" or "Cityname, StateAbbreviation"
 - E.g., 3 city named "Anderson", 6 named "Madison"
- 12% of all sampled users (130,689) have valid and unambiguous city names

Comparison of US Population and Sample Twitter User Population



The authors at least consider the sampling bias problem on Twitter.

Experimental Setup

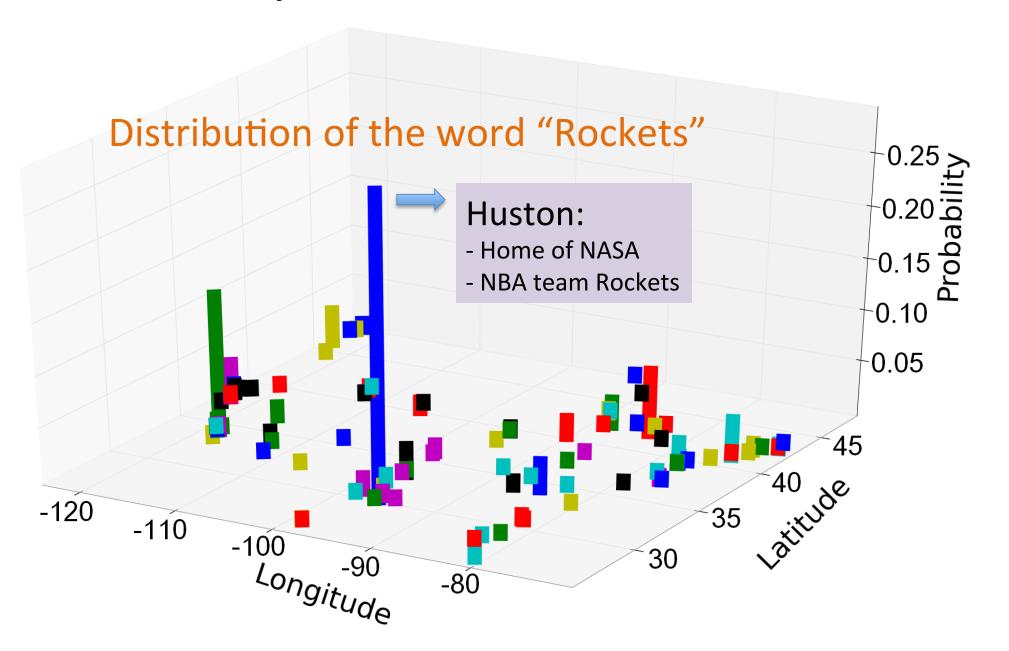
Location Estimation Problem: Given a set of tweets $S_{tweets}(u)$ posted by a Twitter user u, estimate a user's probability of being located in city i: $p(i|S_{tweets}(u))$, such that the city with maximum probability $l_{est}(u)$ is the user's actual location $l_{act}(u)$.

[Training Set]: 130K Twitter users with self-labeled city-level location within United States, and 4M tweets sampled from them. [Test Set]: 5K Twitter users with 1K tweets each + lat/long (separate from the training set)

[Metrics]:

- •Average Error Distance: distance in miles between the actual location of the user and the estimated location
- •Accuracy (ACC): percentage of users with an error distance between 0-100 miles.

Probability of a Location Given a Word



Baseline Estimator: Aggregate Over All Words

$$p(i|S_{words}(u)) = \sum_{w \in S_{words}(u)} p(i|w) * p(w)$$

[Method]: Given the set of words extracted from user u's tweets, aggregating the probability of city i given individual word w, will give us the probability of the user to be located in city i.

Baseline Location Estimation

- [Results]:
 - -Average Error Distance: 1,773 miles
 - Accuracy: 10.12% of users in the test data set are geo-located within 100 miles to the real locations

Two Key Observations

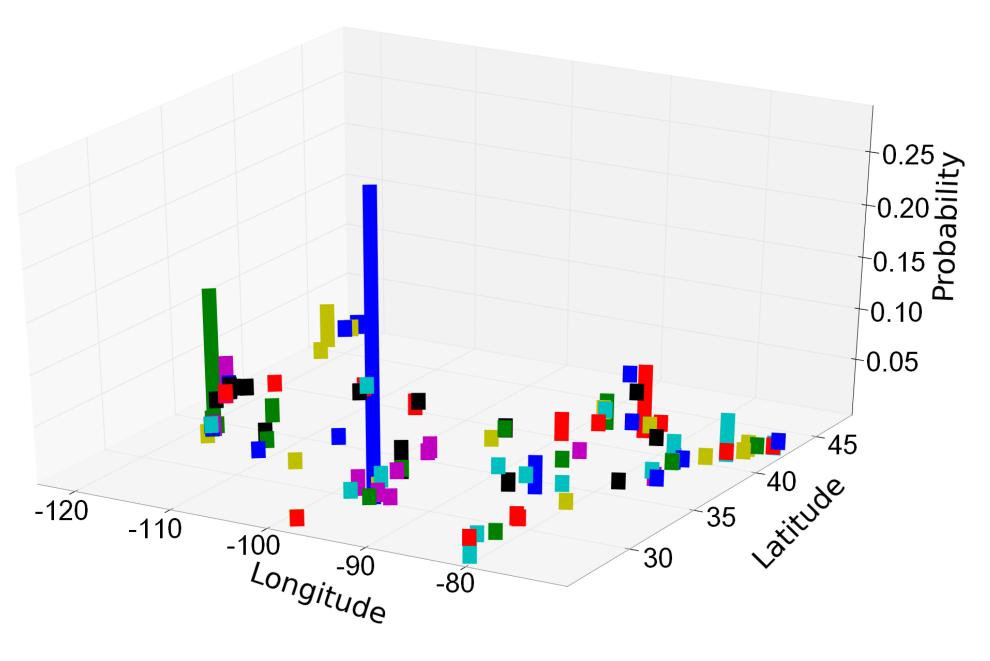
Observation #1:

- Most words provide very little power at distinguishing the location of a user. (e.g., August, peace, world)
- Need a method to isolate "local words" (e.g., "howdy" is a typical greeting word used in Texas)

Observation #2:

- Per-city word distributions for small cities are under-specified leading to large estimation errors.
- → Need a method to overcome this sparsity

How to identify the local words?



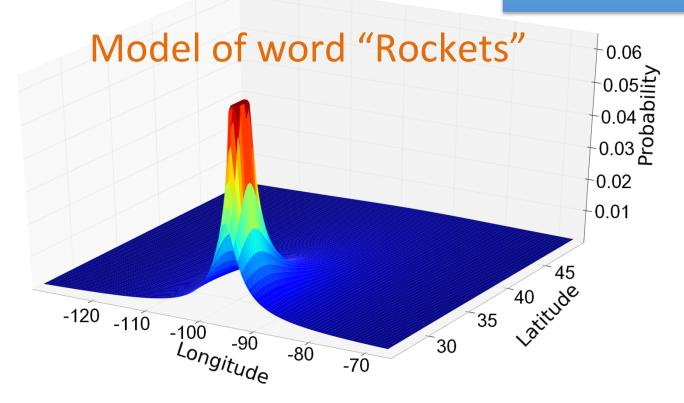
- Local Words: A high local focus and fast dispersion
- Non-local Words: many multiple central points with no clear dispersion
- Q: How do we assess spatial focus and dispersion?

Enlightened by Backstrom's model [Backstrom et al. WWW 08], generate a model for each word according to the observed probabilistic distribution, in the form of:

$$p = Cd^{-a}$$

C: central frequency a: how fast the

frequency falls

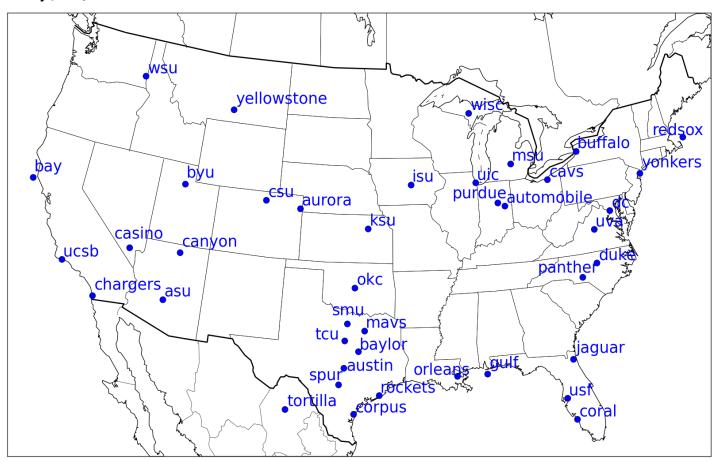


Manual classified some models as local words, and train classifiers with the labeled set to categorize other models. Finally, **3,615 words** are classified as **local words**.

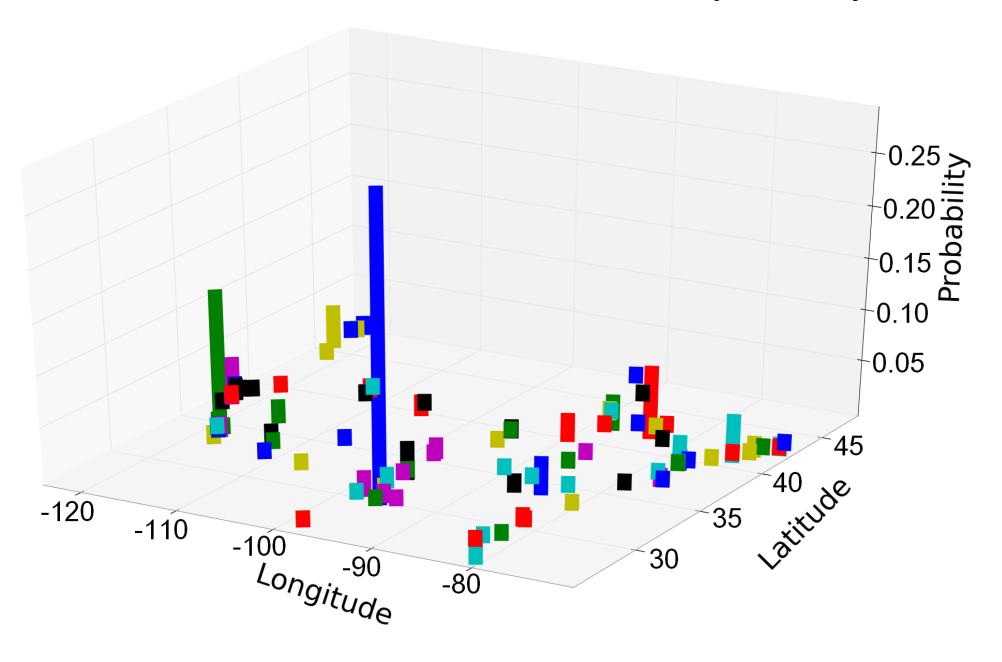
Table 1: Example Local Words

Word	Latitude	Longitude	C_0	α
automobile	Detroit		0.5018	1.8874
casino	Las Vegas		0.9999	1.5603
tortilla	Border of Texas and Mexico		0.0115	1.0350
canyon	Grand Canyon		0.2053	1.3696
redsox	Boston		0.1387	1.4516

Manual classified some models as local words, and train classifiers with the labeled set to categorize other models. Finally, **3,615 words** are classified as **local words**.



How to overcome tweet sparsity?



Overcoming Tweet Sparsity

•Laplace Smoothing:

$$p(i|w) = \frac{1 + count(w, i)}{V + N(w)}$$

Ignore geographic information

•State-Level Smoothing:

$$p'(i|w) = \lambda * p(i|w) + (1 - \lambda) * \frac{\sum_{i \in S_c} p(i|w)}{|S_c|}$$

Coarse grained: State

Lattice-Based Neighborhood Smoothing:

$$p'(lat|w) = \mu * p(lat|w) + (1.0 - \mu) * \sum_{lat_i \in S_{neighbors}} p(lat_i|w)$$

$$p'(i|w) = \lambda * p(i|w) + (1.0 - \lambda) * p'(lat|w)$$

Fine grained: Lattice

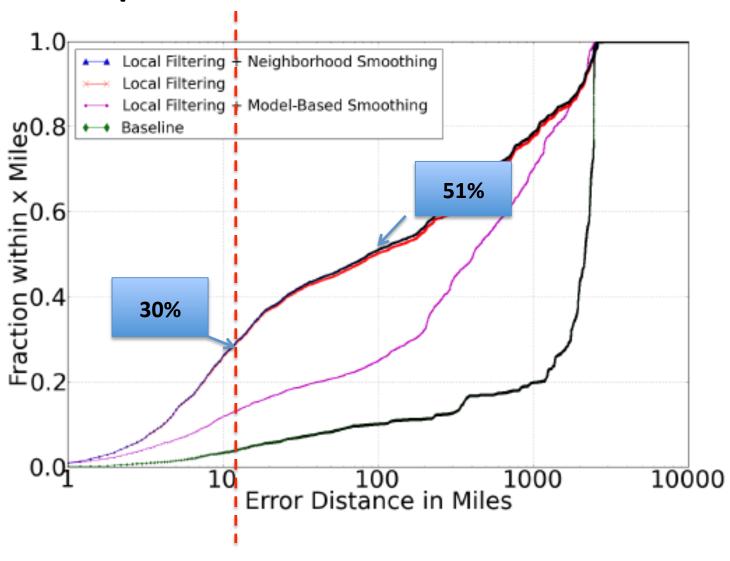
Impact of Refinements

Method	ACC	AvgErrDist (Miles)	
Baseline	0.101	1773.146	
+ Local Filtering (LF)	0.498	539.191	
+ LF + Laplace	0.480	587.551	
+ LF + State-Level	0.502	551.436	_
+ LF + Neighborhood	0.510	535.564	
+ LF + Model-based	0.250	719.238	

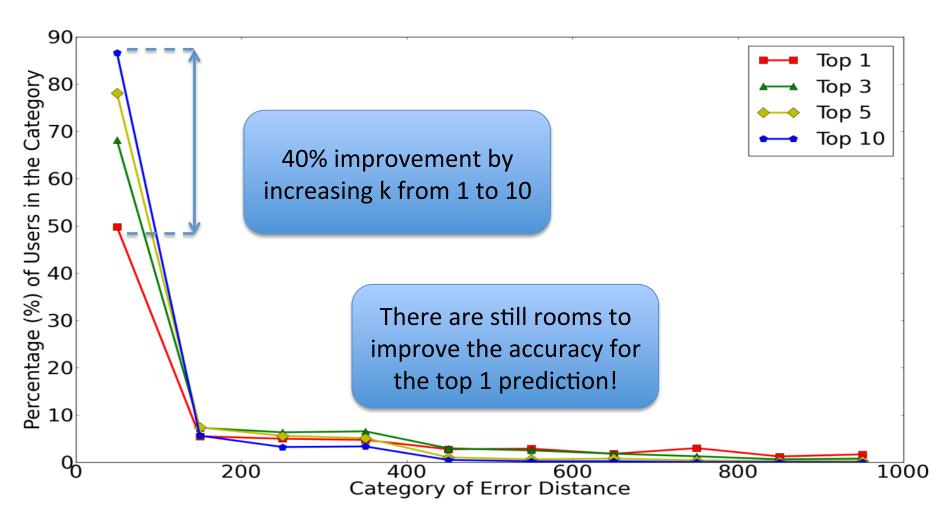
•Key: Local Filtering.

•#1 Smoothing Technique: Neighborhood-based smoothing.

Comparison Across Estimators

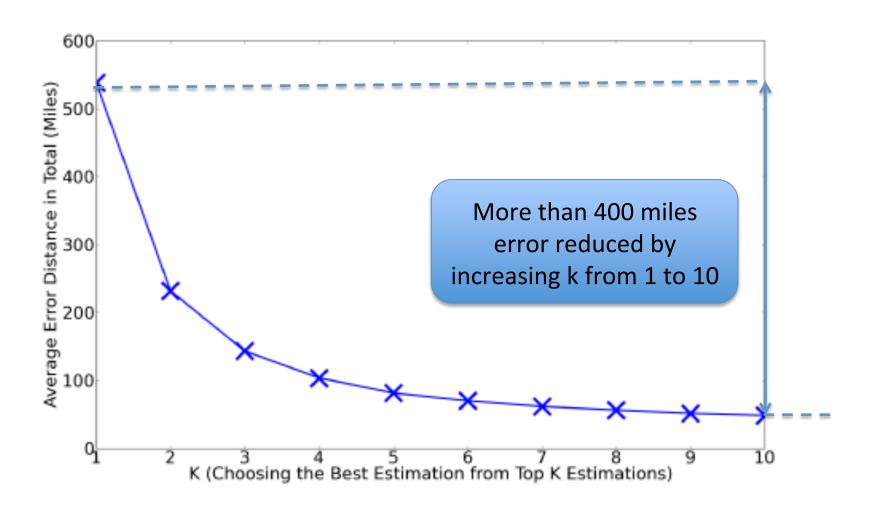


Capacity of the Location Estimator



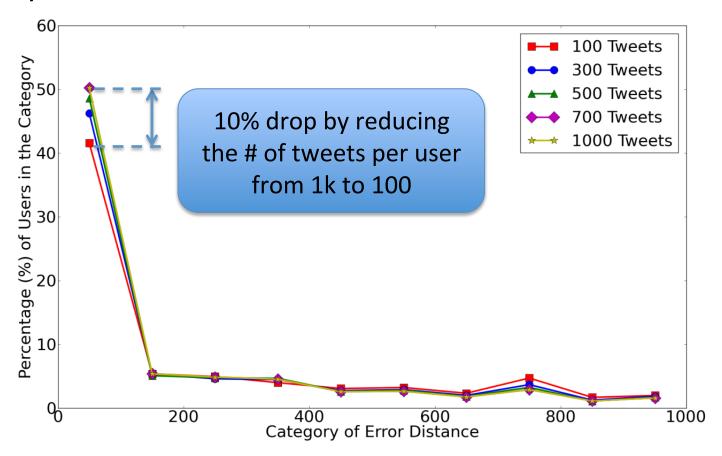
Accuracy is dramatically improved as they increase k, and almost 90% of users are located within 100 miles of their actual locations in the top 10.

Average Error Distance vs k



Estimation Quality: Number of Tweets

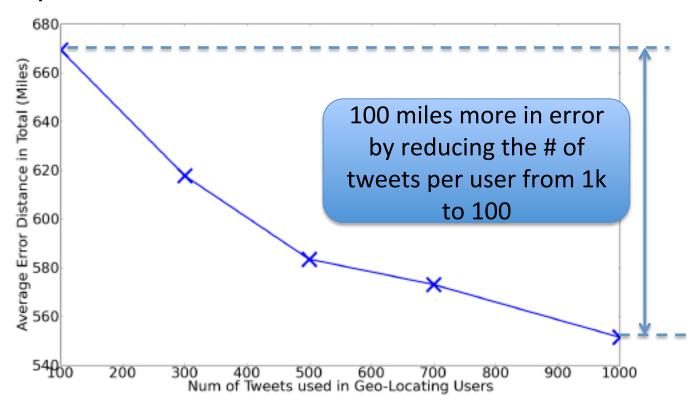
Examine whether they can achieve equally good estimation results using only 100 tweet or a few 100s.



Even with only 100 tweets, 40%+ users are located within 100 miles.

Estimation Quality: Number of Tweets

Examine whether they can achieve equally good estimation results using only 100 tweet or a few 100s.



(b) Average Error Distance with Different # of Tweets

Even with only 100 tweets, 40%+ users are located witin 100 miles.

Conclusions and Next Steps

- Proposed and evaluated a probabilistic framework for estimating a Twitter user's city-level location based purely on the content of the user's tweets.
- Can place **51% of Twitter users within 100 miles** of their actual location.

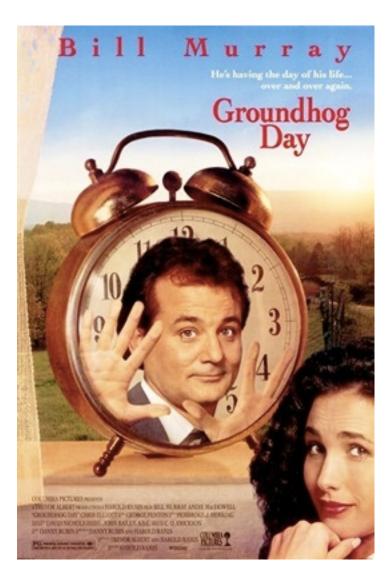
What next?

- More data = better location estimation
- Incorporate social ties into the estimator
- Explore temporal aspect of location estimation

Duplicate Detection on Twitter

Paper 4: "Groundhog day: near-duplicate detection on twitter." Tao, Ke, et al. Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013.

Groundhog Day



Film released on Feb. 12 1993.

Story: A weather man finds himself in a time loop, repeating the same day again and again.

Outline

- Search & Retrieval on Twitter
- Duplicate Content on Twitter
- Near-duplicates in Twitter Search
- Solution to Twitter Search: the Twinder Framework
- Analysis & Evaluation
- Conclusion

Search & Retrieval on Twitter

How do people use Twitter as a source of information?

- Twitter is more like a news media.
- How do people search on Twitter? [Teevan et al.]
 - Repeated queries & monitoring for new content
- Problems:
 - Short tweets → lots of similar information
 - Few people produce contents → many retweets, copied content

J. Teevan, D. Ramage, and M. R. Morris. #TwitterSearch: A Comparison of Microblog Search and Web Search. In Proceedings of the 4th International Conference on Web Search and Web Data Mining (WSDM), 2011.

Duplicate Content on Twitter (1/3)

Classification of near-duplicates in 5 levels

Exact copy

Completely identical in terms of characters.

t1: Huge New Toyota Recall Includes 245,000 Lexus GS, IS Sedans - http://newzfor.me/?cuye

t2: Huge New Toyota Recall Includes 245,000 Lexus GS, IS Sedans - http://newzfor.me/?cuye

Nearly exact copy

 Completely identical except for #hashtags, URLs or @mentions

t3: Huge New Toyota Recall Includes 245,000 Lexus GS, IS Sedans - http://bit.ly/ibUoJs

Duplicate Content on Twitter (2/3)

Classification of near-duplicates in 5 levels

Strong near-duplicate

Same core message, one tweet contains more information.

t4: Toyota recalls 1.7 million vehicles for fuel leaks: Toyota's latest recalls are mostly in Japan, but they also... http://bit.ly/dH0Pmw

t5: Toyota Recalls 1.7 Million Vehicles For Fuel Leaks http://bit.ly/flWFWU

Weak near-duplicate

- Same core message, one tweet contains personal views.
- Convey semantically the same message with differing information nuggets.

t6: The White Stripes broke up. Oh well.

t7: The White Stripes broke up. That's a bummer for me.

Duplicate Content on Twitter (3/3)

Classification of near-duplicates in 5 levels

Low overlap

 Semantically contain the same core message, but only have a few words in common

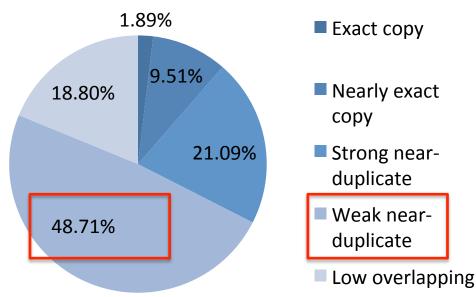
t8: Federal Judge rules Obamacare is unconsitutional...

t9: Our man of the hour: Judge Vinson gave Obamacare its second unconstitutional ruling. http://fb.me/zQsChak9

Near-Duplicates in Twitter Search (1/2)

Analysis of the Tweets2011 corpus

- For the 49 topics (queries),
 2,825 topic-tweet pairs are relevant, 57 tweets/topic
- They manually labeled
 55,362 tweet pairs
- They found 2,745 pairs of duplicates in different levels.



People like to tweet their personal opinions.

Near-Duplicates in Twitter Search (2/2)

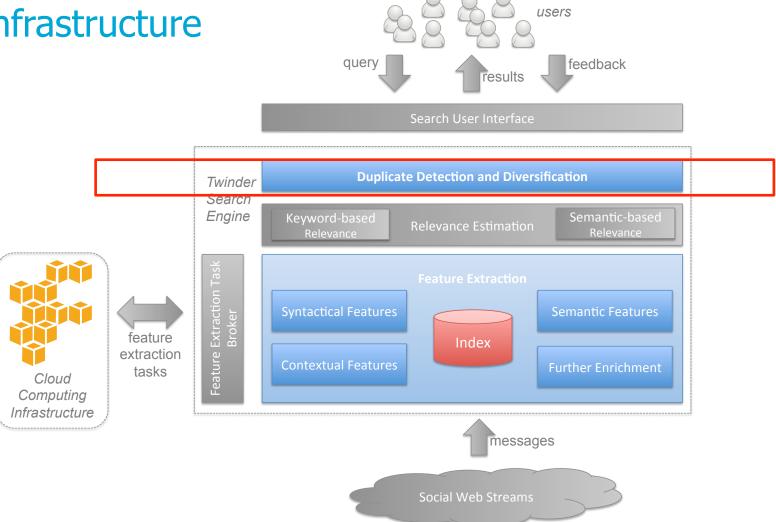
Motivation

- For each of the 49 topics, rank the tweets according to their relevance to the topic (using previous work)
- On average, they found around 20% duplicates in the search results.

Range	Top 10	Top 20	Top 50	All
Duplicate %	19.4%	22.2%	22.5%	22.3%

Twinder Framework

Search Infrastructure



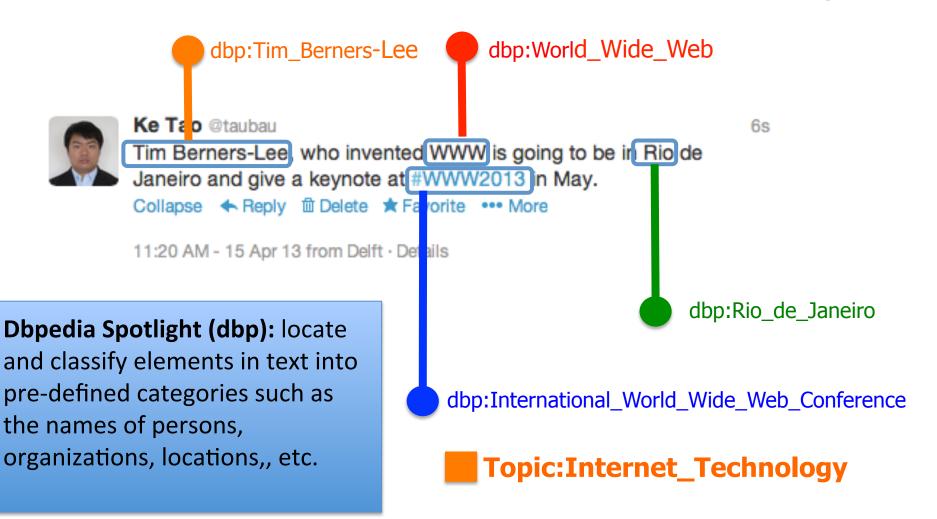
Building a Classifier ... (1/5)

Overview of the **syntactic** features

Features	Description		
Levenshtein distance	Number of characters required to change (substitution, insertion, deletion) one tweet to the other		
Overlap in terms	Jaccard similarity between two sets of words in tweets.		
Overlap in #hashtags	Jaccard similarity between two sets of #hashtags in tweets.		
Overlap in URL	Jaccard similarity between two sets of URLs in tweets.		
Overlap in expanded URL	Recomputed "Overlap in URL" after expanding shortened URLs in both tweets.		
Length difference	The difference in length between two tweets.		

Building a Classifier ... (2/5)

Extract **semantics** from tweets (using information extraction tool to extract **entities**)



Building a Classifier ... (3/5)

Overview of the **semantic** features

WordNet: a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive **synonyms** (synsets), each expressing a distinct concept.

http://wordnet.princeton.edu/

Examples:

- -Fire, flame, blaze
- -Explosion, blast, blow up

Building a Classifier ... (3/5)

Overview of the **semantic** features

Features	Description
Overlap in Entities	Jaccard similarity between two sets of entities extracted from two tweets
Overlap in Entities Types	Jaccard similarity between two sets of types of entities from two tweets
Overlap in Topics	Jaccard similarity between two sets of detected topics in two tweets
Overlap in WordNet Concepts	Jaccard similarity between two sets of WordNet Nouns in tweets
Overlap in WordNet Synset Concepts	Recomputed Overlap in WordNet Concepts after Combining interlinked Concepts in Synsets
WordNet similarity	The similarity calculated based on semantic relatedness* between concepts from two tweets

Building a Classifier ... (4/5)

Enriched semantic features

 Integrate content from external resources and construct the same set of semantic features

t3: Huge New Toyota Recall Includes 245,000 Lexus GS, IS Sedans - http://bit.ly/ibUoJs

Building a Classifier ... (5/5)

Overview of **contextual** features

Features	Description
Temporal difference	The difference of posting time of two tweets
Difference in #followees	The difference in number of followees of the author of the tweets
Difference in #followers	The difference in number of followers of the author of the tweets
Same client	Indicator of whether the two tweets are posted from the same client application

Summary of Features

- What feature categories do they have?
 - Syntactical features (6)
 - Semantic features (6)
 - Enriched semantic features (6)
 - Contextual features (4)
- Classification strategies different feature combinations
 - Dependent on available resources and time constraints

Classification Strategies

Using **different sets of features** for near-duplicate detection on Twitter

Strategy	Description		
Baseline	Based on Levenshstein distance		
Sy	Only Syntactical features		
SySe	Add semantics from tweets		
SyCo	Without Semantics		
SySeCo	Without Enriched Semantics		
SySeEn	Without Contextual features		
SySeEnCo	All Feature included		

Analysis and Evaluation

Research Questions:

R1: How accurately can the **different duplicate detection strategies** identify duplicates?

R2: What kind of **features are of particular importance** for duplicate detection?

R3: How does the accuracy vary for **the different levels** of duplicates?

R4: How do the duplicate detection strategies impact search effectiveness on Twitter?

Data set: Tweets2011

TREC 2011 Microblog Track

- Twitter corpus
 - 16 million tweets (Jan. 24th, 2011 Feb. 8th)
 - 4,766,901 tweets classified as English
 - 6.2 million entity-extractions (140k distinct entities)
- Relevance judgments
 - 49 topics
 - 40,855 (topic, tweet) pairs, 2,825 judged as relevant
 - 57.65 relevant tweets per topic (on average)
- Duplicate level labeling
 - 55,362 tweet pairs labeled
 - 2,745 labeled as duplicates (in 5 levels)
 - Publicly available at http://wis.ewi.tudelft.nl/duptweet/

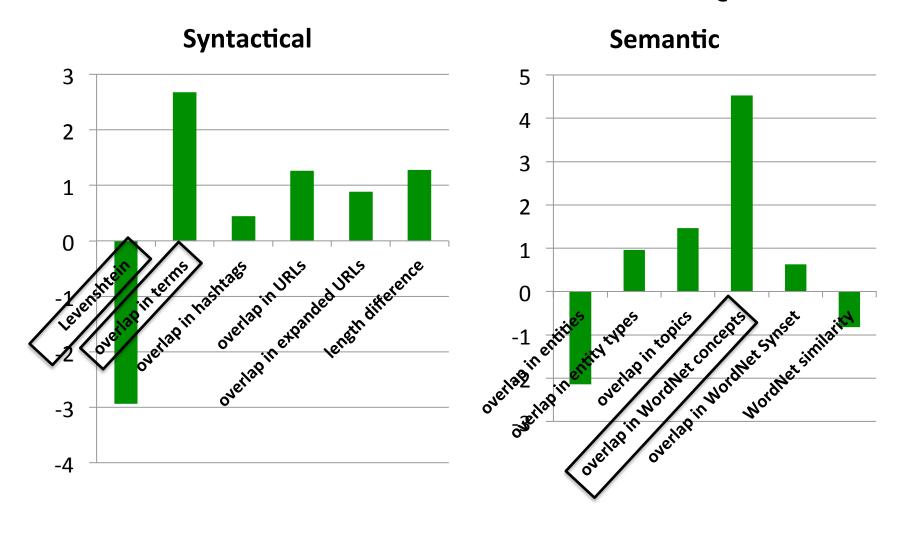
Classification Accuracy Duplicate or not? → RQ1

Precision	Recall	F-measure	
0.506	8 0.1913	0.2777	
0.598	2 0.2918	0.3923	
0.512	7 0.337 0	0.4067	
0.533	3 0.3679	0.4354	
0.529	7 0.3767	0.4403	
0.481	6 0.4200	0.4487	
0.486	8 0.4299	0.4566	
	0.506 0.598 0.512 0.533 0.529 0.481	Precision Recall 0.5068 0.1913 0.5982 0.2918 0.5127 0.3370 0.5333 0.3679 0.5297 0.3767 0.4816 0.4200 0.4868 0.4299	

Overall, they can achieve a precision and recall of about 49% and 43% respectively by applying all possible features.

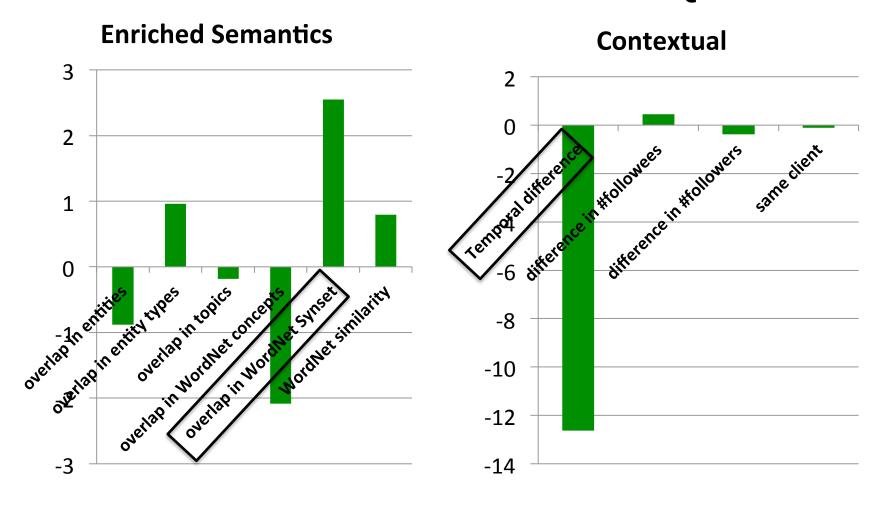
Feature Weights (1/2)

Which features matter the most? → RQ2



Feature Weights (2/2)

Which features matter the most? → RQ2



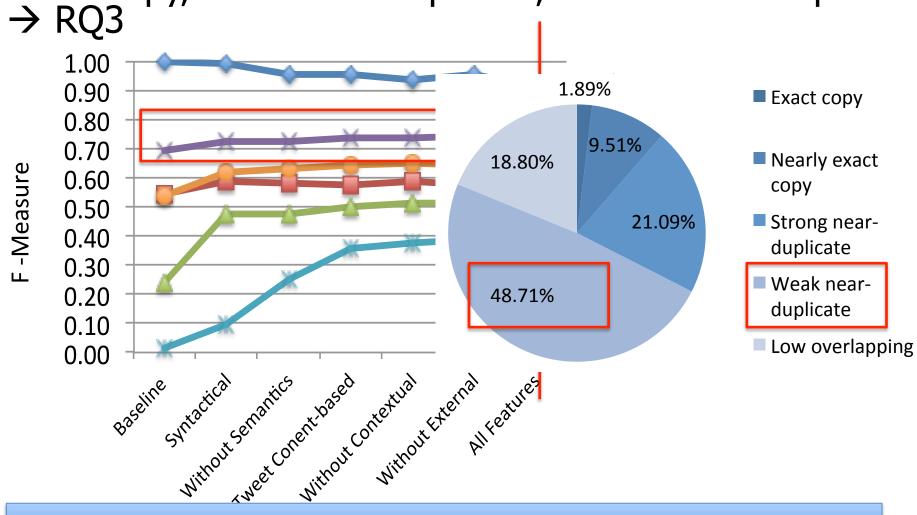
Results for Predicting Duplicate Levels (1/2) Exact copy, weak near-duplicate, ... or low overlap? RQ3

Features	Precision	Recall	F-measure	
Baseline	0.5553	0.5208	0.5375	
Sy	0.6599	0.5809	0.6179	
SyCo	0.6747	0.5889	0.6289	
SySe	0.6708	0.6151	0.6417	
SySeEn	0.6694	0.6241	0.6460	
SySeCo	0.6852	0.6198	0.6508	
SySeEnCo	0.6739	0.6308	0.6516	

Overall, they achieve a precision and recall of about 67% and 63% respectively by applying all features.

Results for Predicting Duplicate Levels (2/2)

Exact copy, weak near-duplicate, ... or low overlap?



Q: What information can you extract from this figure?

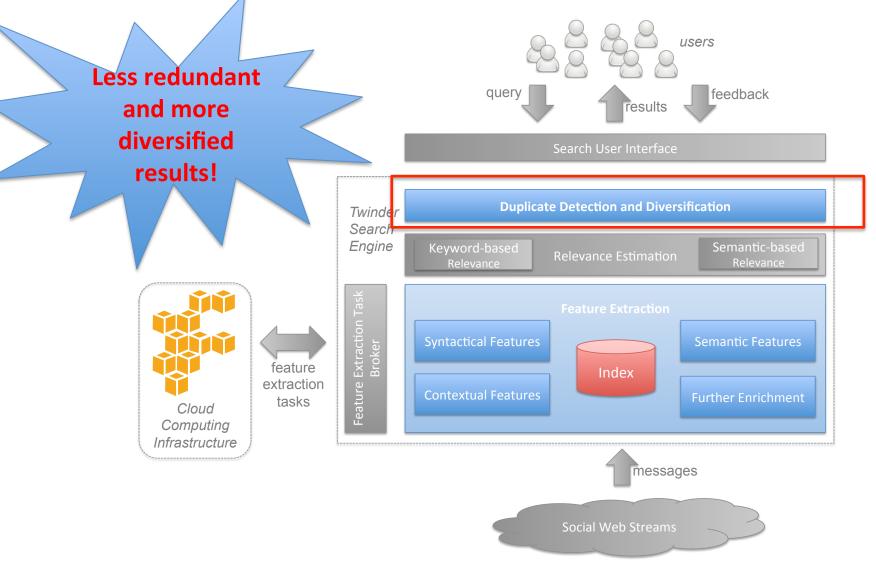
Search Result Diversification

How much redundancy can they detect and remove? → RQ4

- A core application of near-duplicate detection strategies is the diversification of search results. They simply remove the duplicates that are identified by our method.
- Near-duplicates after filtering:

Range	Top10	Top20	Top50	All
Baseline	19.4%	22.2%	22.5%	22.3%
After Filtering	9.1%	10.5%	12.0%	12.1%
Improvement	+53.1%	+52.0%	+46.7%	+45.7%

Revisit Twinder Framework



Conclusions

- 1. Conduct an **analysis of duplicate content** in Twitter search results and **infer a model for categorizing** different levels of duplicity.
- 2. Develop a **near-duplicate detection framework** for microposts that provides functionality for analyzing **4 categories of features**.
- 3. Given duplicate detection framework, the paper performs extensive evaluations and analysis of different duplicate detection strategies on a large, standardized Twitter corpus to investigate the quality of (i) detecting duplicates and (ii) categorizing the duplicity level of two tweets.
- 4. The proposed approach enables search result diversification and analyzes the impact of the diversification on the search quality.
- The progress on Twinder on be found at: http://wis.ewi.tudelft.nl/twinder/