Big Data Processing

CSE 40437/60437-Spring 2015
Prof. Dong Wang

Key Questions to Answer

Why Hadoop?

What is Hadoop?
How to Hadoop?
Examples of Hadoop

* Why is Hadoop ?

What is Big Data

A bunch of data?
A technical term?
An industry?

A trend?

A set of skills?

What is Big Data

* Wikipedia big data

— An all-encompassing term for any collection of
data sets so large and complex that it becomes
difficult to process using on-hand data
management tools or traditional data processing
applications.

How big is big?

2008: Google processes 20 PB a day

2009: Facebook has 2.5 PB user data + 15 TB /
day

2011: Yahoo! has 180-200 PB of data
2012: Facebook ingests 500 TB/day

2013: YouTube 1000 PB video storage; 4
billion views/day

1 PB=10"3 TB=10"6 GB=10"15 B

1 Exabyte = 1000 PB Zettabyte, Yottabyte ...

The percentage of all data in the word that
has been generated in last 2 years?

0%

of all the data in the
world has been generated
over the last 2 years'

2008 2009 2010 2011 2012 2013

Who is generating Big Data?

Who is generating Big Data?

Social

Twitter for Business

User Tracking &
Engagement

Customer
uuuuuu Support Segmentation

Sales C

Feature Usage

Homeland Security

Financial Services

Real Time Search

Google

18] f

That is a lot of data ...

{

What are Key Features of Big Data?

Volume Velocity
Social Media
Petabyte scale Sensor
Throughput
Big Data
Variety 4 Vs Veracity
Structured Unclean
Semi-structured Imprecise

Unstructured Unclear

* Philosophy to Scale for Big Data?

Wi

Divide and Conquer

/

|
“worker”

v

ry

N\

“Work”

|

W,

“worker”

v

ry

|

“Result”

N

“worker”

/

W3

v

r3

Divide Work

v
Combine Results

Distributed processing is non-trivial

 How to assign tasks to different workers in an
efficient way?

 What happens if tasks fail?

* How do workers exchange results?

* How to synchronize distributed tasks allocated

to different workers?
s- J}* c-

Big data storage is challenging

Data Volumes are massive
Reliability of Storing PBs of data is challenging

All kinds of failures: Disk/Hardware/Network
Failures

Probability of failures simply increase with the
number of machines ...

One popular solution: Hadoop

)

i O

!
|
{

i

\

LY

=3
=
o

Hadoop Cluster at Yahoo! (Credit: Yahoo

Hadoop offers

 Redundant, Fault-tolerant data storage
* Parallel computation framework
* Job coordination

CrThEEbEED

Hadoop offers

 Redundant, Fault-tolerant data storage
* Parallel computation framework

e Job coordination — Q: Where file is
located?

No longer need to
Q: How to handle

worry about .
failures & data lost?
| > —
00 Q: How to divide
Y, computation?
Programmers \ N

Q: How to program
—— for scaling?

A real world example of New York

Times

Goal: Make entire archive of articles available
online: 11 million, from 1851

Task: Translate 4 TB TIFF images to PDF files

Solution: Used Amazon Elastic Compute Cloud
(EC2) and Slmple Storage System (S3)

Clhe
New ork
Cimes

A real world example of New York

Times

 Goal: Make entire archive of articles available
online: 11 million, from 1851

* Task: Translate 4 TB TIFF images to PDF files

 Solution: Used Amazon Elastic Compute Cloud
(EC2) and Simple Storage System (S3)

° I : ~
Time: < 24 hours QJl)l‘

e Costs: $240 - =
New ork
Cimes

A little history on Hadoop

 Hadoop is an open-source implementation
based on Google File System (GFS) and
MapReduce from Google

 Hadoop was created by Doug Cutting and
Mike Cafarella in 2005

 Hadoop was donated to Apache in 2006

Who are using Hadoop?

Social User Tracking & Homeland Security
Engagement

Customer
Twitter for Busmess Customer Support Segmentation

Smal business advertisers, leamn how to get $100 i Twitter advertising from American Express.

= P

23

Hadoop Stack

Cascading
(Java)

Computation

MapReduce =
(Distributed Programming Framework)

Storage

| HDFS | —
(Hadoop Distributed File System)

Hadoop Resources

 Hadoop at ND:
http://ccl.cse.nd.edu/operations/hadoop/

* Apache Hadoop Documentation:
http://hadoop.apache.org/docs/current/

* Data Intensive Text Processing with Map-Reduce
http://lintool.github.io/MapReduceAlgorithms/
 Hadoop Definitive Guide:

http://www.amazon.com/Hadoop-Definitive-
Guide-Tom-White/dp/1449311520

HDFS
Hadoop Distributed File System

HDFS Outline

Motivation

Architecture and Concepts
Inside

User Interface

Motivation Questions

* Problem 1: Data is too big to store
onh one machine.

 HDFS: Store the data on multiple
machines!

Motivation Questions

* Problem 2: Very high end machines
are too expensive

* HDFS: Run on commodity hardware!

Motivation Questions

* Problem 3: Commodity hardware
will fail!

 HDFS: Software is intelligent enough
to handle hardware failure!

Motivation Questions

* Problem 4: What happens to the

data if the machine stores the data
fails?

* HDFS: Replicate the data!

Motivation Questions

* Problem 5: How can distributed
machines organize the data in a
coordinated way?

e HDFS: Master-Slave Architecture!

HDFS Architecture: Master-Slave

Master e Name Node: Controller
Name Node (NN) — File System Name Space
Secondary Name Node Management
(SNN) — Block Mappings

Data Node (DN)

 Data Node: Work Horses
g g E — Block Operations

— Replication

g Q Q Secondary Name Node:
— Checkpoint node

Slaves Single Rack Cluster

HDFS Architecture: Master-Slave

Multiple-Rack Cluster

AR

Name Node (NN) Secondary Name Node
(SNN)

ata Node (DN)

i W e
ITRLINLY

Rack N

HDFS Architecture: Master-Slave

Multiple-Rack Cluster

Reliable Storage

HDFS Architecture: Master-Slave

Multiple-Rack Cluster

M .

NmNd(NN) Sec dmeNd
(SNN)

a Node (DN) DataNode (

iii

Data DN)

i
i”ﬁ‘i J
AL

e e

Rack N

HDFS Architecture: Master-Slave

Multiple-Rack Cluster

HDFS Architecture: Master-Slave

Multiple-Rack Cluster

Keep bulky
commun ication
within a rack!

NmNd(NN) Sec dmeNd

Data (DN) ata Node (DN)

i%ﬂiii
TINEN

HDFS Inside: Name Node

Name Node

File 1
File 2

File 3

Data Nodes i

HDFS Inside: Name Node

Name Node Periodically Secondary Name Node

Data Nodes

HDFS Inside: Blocks

e Q: Why do we need the abstraction “Blocks”
in addition to “Files”?

e Reasons:

e File can be larger than a single disk

e Block is of fixed size, easy to manage and
manipulate

e Easy to replicate and do more fine grained load
balancing

HDFS Inside: Blocks

e HDFS Block size is by default 64 MB, why it is
much larger than regular file system block?

e Reasons:

e Minimize overhead: disk seek time is almost
constant

e Example: seek time: 10 ms, file transfer rate:

100MB/s, overhead (seek time/a block transfer
time) is 1%, what is the block size?

e 100 MB (HDFS-> 128 MB)

HDFS Inside: Read

Client connects to NN to read data

NN tells client where to find the data blocks

Client reads blocks directly from data nodes (without going through NN)
In case of node failures, client connects to another node that serves the
missing block

B wnN e

HDFS Inside: Read

e Q: Why does HDFS choose such a design for
read? Why not ask client to read blocks
through NN?

e Reasons:

e Prevent NN from being the bottleneck of the
cluster

e Allow HDFS to scale to large number of concurrent
clients

e Spread the data traffic across the cluster

HDFS Inside: Read

e Q: Given multiple replicas of the same block,

how does NN decide which replica the client
should read?

e HDFS Solution:
e Rack awareness based on network topology

HDFS Inside: Network Topology

 The critical resource in HDFS is bandwidth,
distance is defined based on that

 Measuring bandwidths between any pair of
nodes is too complex and does not scale

 Basic ldea:
— Processes on the same node
— Different nodes on the same rack

— Nodes on different racks in the same
data center (cluster)

— Nodes in different data centers

Bandwidth
becomes less

HDFS Inside: Network Topology

 HDFS takes a simple approach:
— See the network as a tree

— Distance between two nodes is the sum of their
distances to their closest common ancestor

Rack 1 Rack 2 Rack 3 Rack 4
nl n3 n5 n7
n2 n4 n6 n8

Data center 1 Data center 2

HDFS Inside: Network Topology

 What are the distance of the following pairs:
Dist (d1/r1/n1,d1/r1/nl1)= ©
Dist(d1/r1/n1, d1/r1/n2)= 2
Dist(d1/r1/n1, d1/r2/n3)= 4
Dist(d1/r1/n1, d2/r3/n6)= 6

Rack1 |/ | Rack2 Rack 3 Rack 4
-~ V4

7’
Y
,, ‘A /(\\

Bk
|

Data center 1 Data center 2

HDFS Inside: Write
T e
—_— o/ .

3

\/\/

Client connects to NN to write data

NN tells client write these data nodes

Client writes blocks directly to data nodes with desired replication factor

In case of node failures, NN will figure it out and replicate the missing blocks

B wnN e

HDFS Inside: Write

e Q: Where should HDFS put the three replicas
of a block? What tradeoffs we need to
consider?

e Tradeoffs:
e Reliability
e \Write Cost
e Read Cost

Q: What are some possible strategies?

HDEFS Inside: Write
e Replication Strategy vs Tradeoffs

Put all replicas on one
node @

Put all replicas on
different racks <

2
2

09 @

HDEFS Inside: Write
e Replication Strategy vs Tradeoffs

Put all replicas on one

node @ < @

Put all replicas on

different racks \'\2/ @ @

HDFS:

1-> same node as client

2-> a node on different /{};\ /{}"‘
QO Q

rack (\L//
3-> a different node on
the same rack as 2

HDFS Interface

e Web Based Interface
— http://ccl.cse.nd.edu/operations/hadoop/

e Command Line: Hadoop FS Shell

— https://hadoop.apache.org/docs/r2.4.1/hadoop-
project-dist/hadoop-common/
FileSystemShell.html

HDFS-Web Ul

NameNode 'disc01.crc.nd.edu:8020'

Started: Mon Sep 08 12:24:52 EDT 2014

Version: 0.21.0, 985326

Compiled: Tue Aug 17 01:02:28 EDT 2010 by tomwhite from branches/branch-0.21

Upgrades: There are no upgrades in progress.

Browse the filesystem
NameNode Logs

Cluster Summary

1580702 files and directories, 1550126 blocks = 3130828 total.

Heap Memory used 1.08 GB is 82% of Commited Heap Memory 1.3 GB. Max Heap Memory is 1.74 GB.
Non Heap Memory used 22.26 MB is 85% of Commited Non Heap Memory 26.12 MB. Max Non Heap Memory is 132 MB.

Configured Capacity
DFS Used

Non DFS Used

DFS Remaining

DFS Used%

DFS Remaining%
Live Nodes

Dead Nodes

179.08 TB
26.98 TB
9.12TB
142.98 TB
15.07 %
79.84 %
25

0

HDFS-Web Ul

Contents of directory /users/dwang5

Goto : users/dwang5 1\£

Go to parent directory

Name ||Type| Size \ReplicationHBlock SizelModiﬁcation TimeHPermissionHOwner HGroup \
Staging “dir | ‘ H |2014-09-14 23:18 “rwx ------ HdwangSHsupergrouﬂ
|aggoutput “dir || H || ||2014-09-06 14:38 “rwxr-xr-x HdwangSHsupergroup\
|gggte_st “dir “ || || “2014-09-06 16:44 “rwxr-xr-x |dwang5“supergroup‘
|M Hdir H H H H2014-09-13 20:10 Hrwxr-xr-x HdwangSHsupergroup\
meanout \dir | \ \ |2014-09-06 17:53 \rwxr-xr-x \dwangS\ supergroup\
medianout |dir | \ ‘ |2014-09-06 18:06 ‘rwxr-xr-x \dwangs‘ supergroup\
normaloutputs ldir | ‘ ‘ |2014-08-30 23:30 lrwxr-xr-x ‘dwangs‘ supergroup\
|outputs “dir || H H ||2014-08-24 00:33 “rwxr-xr-x HdwangSHsupergroup\
|m1ge_s “dir || || || ||2014-09-13 23:48 “rwxr-xr-x |dwang5“supergroup‘
|test hw3 Hdir H H H H2014-09-14 17:30 Hrwxr-xr-x HdwangSHsupergroup\
tests.txt |file [0.19KB (3 |64 MB |2014-09-06 15:03 |rw-r--r-- ||dwang5 supergroup
testsort.txt Ifile [0.07KB |3 |64MB 2014-09-06 17:40 |rw-r--r-- |dwang5 |supergroup
topkout ldir | \ ‘ |2014-09-06 20:45 ‘rwxr-xr-x \dwangs‘ supergroup\
|topkwordout “dir || H H ||2014-09-06 21:03 “rwxr-xr-x HdwangSHsupergroup\
|Wordcountout “dir || || || ||2014-09-07 00:33 “rwxr-xr-x |dwang5“supergroup\

|wordcountmrl Hdir H H H H2014-09-07 10:03 Hrwxr-xr-x HdwangSHsupergroup\
[- 5 -

HDFS Command Line
 Hadoop Shell

[dwang5@disc@1 ~]$ hadoop fs

Jsage: java FsShell
[-1s <path>]
[-1sr <path>]
[-df [<path>]]
[-du [-s] [-h] <path>]
[-dus <path>]
[-count[-q] <path>]
[-mv <src> <dst>]
[-cp <src> <dst>]
[-rm [-skipTrash] <path>]
[-rmr [-skipTrash] <path>]
[-expunge]
[-put <localsrc> ... <dst>]
[-copyFromLocal <localsrc> ... <dst>]
[-moveFromLocal <localsrc> ... <dst>]
[-get [-ignoreCrc] [-crc] <src> <localdst>]
[-getmerge <src> <localdst> [addnl]]
[-cat <src>]
[-text <src>]
[-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>]
[-moveToLocal [-crc] <src> <localdst>]
[-mkdir <path>]
[-setrep [-R] [-w] <rep> <path/file>]
[-touchz <path>]
[-test -[ezd] <path>]
[-stat [format] <path>]

r -1

Big Data Processing 1 Summary

* Big Data and Hadoop background
— What and Why about Hadoop
— 4V challenge of Big Data

 Hadoop Distributed File System (HDFS)
— Motivation: guide Hadoop design
— Architecture: Single rack vs Multi-rack clusters
— Reliable storage, Rack-awareness, Throughput
— Inside: Name Node file system, Read, Write
— Interface: Web and Command line

Job Market Demand in Big Data Science in
Last Two Decades

o
=

Analytics and Data Science Job Growth

=)
3

©
&

o
o
~

0.06

0.05

0.04

0.03

Anaytics and Data Sclence Job Starters (as a percentage of all job starters)

o
o
-

Linked (T[]

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Courtesy Linked Corp.

MapReduce

MapReduce Outline

MapReduce Architecture
MapReduce Internals

MapReduce Examples
JobTracker Interface

MapReduce: A Real World Analogy

Coins Deposit

MapReduce: A Real World Analogy

Coins Deposit

Coins Counting Machine

MapReduce: A Real World Analogy

Coins Deposit

Mapper: Categorize coins by their face values
Reducer: Count the coins in each face value in parallel

MapReduce Architecture: Master-Slaves

Job Client
Task Trackers

Idea: Bring Computation to Data!

| !
Inputs Outputs

HDFS

Name Node

Job Client: Submit Jobs Task Tracker: Execute Jobs

Job Tracker: Coordinate Jobs Job: MapReduce Function+ Config
(Scheduling, Phase Coordination, etc.)

MapReduce Architecture: Workflow

1
>
Task Trackers
3
>
Job Tracker
€ T T 1
: S] e = el [|
\ ‘

S
\\ / LN s
. Inputs v N v Outputs
} Name Node l N P ! N Ky)
“~._- HDFS ~--

1. Client submits job to Job Tracker and
copy code to HDFS

2. Job Tracker talks to NN to find data it
needs

3. Job Tracker creates execution plan
and submits work to Task Trackers

4. Task trackers do the job and report
progress/status to Job Tracker

5. Job Tracker manages task phases
6. Job Tracker finishes the job and
updates status

MapReduce Paradigm

* Implement two functions:
— Map (k1,v1) -> list (k2, v2)
— Reduce(k2, list(v2)) -> list (v3)
* Framework handles everything else

* Value with the same key go to the same
reducer

MapReduce Internal

B -

-

Data Node 1 Data Node 1

i

s — (8 —

MapReduce Example: Word Count
_Wput Split Map Shuttle/Sort | Reduce Output

Deer, 1 Beer, 1 Beer 2
I eer,
Dear Beer River | Beer, 1 Beer, 1
River, 1
; Car, 1 Car, 1 Beer, 2
S b Blver —| Car Car River > car 1 Car, 1 + A, 2 Car, 3
Car Car River < Car. 1 ’
Deer Car Beer River, 1 4l Deer, 2
River, 2
Deer, 1 Deer, 1
! Deer, 2
Deer Car Beer | Car, 1 Deer 1 —4
Beer, 1
River, 1

_; d
River, 1 River, 2

MapReduce Example: Word Count

Input Split

‘ Dear Beer River ‘

|

Deer Beer River }
Car Car River

Deer Car Beer |

Car Car River

|
‘ Deer Car Beer

Q: What are the Key and Value Pairs of Map and Reduce?

Output

Beer, 2
Car, 3

Deer, 2
River, 2

Map Shuttle/Sort Reduce
S By, 4 ‘ Beer, 2 ’
Beer,1 ™% Beer, 1 | T
River, 1 \
car,1 [y Canl ‘ Car, 3
River, 1 (| Car1
AA
Deer, 1 Deer, 1 ‘ Deer. 2
Car, 1 | Deer, 1 | ’
Beer, 1
N River, 1 _
(River, 1 River, 2

Map: Key=word, Value=1

Reduce: Key=word, Value=aggregated count

Mapper and Reducer of Word Count

 Map(key, value){
// key: line number
// value: words in a line
for each word w in value:
Emit(w, "1");}
 Reduce(key, list of values){
// key: a word
// list of values: a list of counts
int result =0;
for each v in values:
result += Parselnt(v);

Emit(key, result);}

MapReduce Example: Word Count

Input Split

‘ Dear Beer River ‘

|

Deer Beer River }
Car Car River

Deer Car Beer |

Car Car River

|
‘ Deer Car Beer

Map Shuttle/Sort Reduce
Deer, 1 Beer’ 1 ‘ B 5 ’
Beer, 1 | Beer, 1 | = |
River, 1
Car, 1 Car, 1
Car, 1 Car, 1 ‘ Car, 3
River, 1 Car, 1
Deer, 1 Deer, 1 ‘ Deer. 2
Car, 1 Deer, 1 ’
Beer, 1
N River, 1 _
T River, 1 River, 2

Output

Beer, 2
Car, 3

Deer, 2
River, 2

Q: Do you see any place we can improve the efficiency?

Local aggregation at mapper will be able to improve

MapReduce efficiency.

MapReduce: Combiner

Combiner: do local aggregation/combine task at
mapper

Ear, 1 Car, 2 Car, 2 Car, 3
.ar, 1 River, 1 Car, 1
River, 1

Q: What are the benefits of using combiner:
— Reduce memory/disk requirement of Map tasks
— Reduce network traffic

Q: Can we remove the reduce function?

— No, reducer still needs to process records with same key
but from different mappers

Q: How would you implement combiner?
— |t is the same as Reducer!

MapReduce WordCount 2

* New Goal: output all words sorted by their
frequencies (total counts) in a document.

* Question: How would you adopt the basic
word count program to solve it?

* Solution:
— Sort words by their counts in the reducer

— Problem: what happens if we have more than
one reducer?

MapReduce WordCount 2

* New Goal: output all words sorted by their
frequencies (total counts) in a document.

* Question: How would you adopt the basic word
count program to solve it?

e Solution:
— Do two rounds of MapReduce

— In the 2" round, take the output of WordCount as
input but switch key and value pair!

— Leverage the sorting capability of shuffle/sort to do
the global sorting!

MapReduce WordCount 3

* New Goal: output the top K words sorted by
their frequencies (total counts) in a document.

* Question: How would you adopt the basic
word count program to solve it?

e Solution:

— Use the solution of previous problem and only
grab the top K in the final output

— Problem: is there a more efficient way to do it?

MapReduce WordCount 3

* New Goal: output the top K words sorted by
their frequencies (total counts) in a document.

* Question: How would you adopt the basic
word count program to solve it?

e Solution:

— Add a sort function to the reducer in the first
round and only output the top K words

— Intuition: the global top K must be a local top K
in any reducer!

MapReduce In-class Exercise

* Problem: Find the maximum monthly
temperature for each year from weather reports
* Input: A set of records with format as:
<Year/Month, Average Temperature of that month>
- (200707,100), (200706,90)
- (200508, 90), (200607,100)
- (200708, 80), (200606,80)
* Question: write down the Map and Reduce
function to solve this problem
— Assume we split the input by line

Mapper and Reducer of Max

Temperature
 Map(key, value){

// key: line number
// value: tuples in a line
for each tuple t in value:

Emit(t->year, t->temperature);} Combiner is the same
as Reducer

 Reduce(key, list of values){
// key: year
//list of values: a list of monthly temperature
int max_temp =-100;
for each v in values:
max_temp= max(v, max_temp);

Emit(key, max_temp);}

MapReduce Example: Max Temperature

|

(200707,100), (200706,90)
(200508, 90), (200607,100)
(200708, 80), (200606,80)

(2007,100), (2007,90)

f

(2007,100)

E

(2005,[90])

J

(2005,90)

v

(2005, 90), (2006,100)

v

(2007, 80), (2006, 80)

(2005, 90), (2006,100)

(2007, 80), (2006, 80)

(2006,[100, 80])

v
v

(2006,100)

(2007,[100, 80])

(2007,100)

MapReduce In-class Exercise

* Key-Value Pair of Map and Reduce:
— Map: (year, temperature)
— Reduce: (year, maximum temperature of the year)

* Question: How to use the above Map Reduce
program (that contains the combiner) with slight
changes to find the average monthly temperature
of the year?

Mapper and Reducer of Average Temperature

 Map(key, value){
// key: line number
// value: tuples in a line
for each tuple t in value:

Emit(t->year, t->temperature);}
Combiner is the same
as Reducer

 Reduce(key, list of values){

// key: year
// list of values: a list of monthly temperatures

int total_temp =0;
for each v in values:

total _temp= total _temp+y;
Emit(key, total_temp/size_of(values));}

MapReduce Example: Average Temperature

_ nput
 Map

(200707,100),

(200706,90)

(200508, 90), (200607,100)

(200708, 80),

(200606,80)

Real averaie of

(2007,100), (2007,90)

(2007,95)

(2005,[90])

 Reduce

(2005,90)

v

(2005, 90), (2006,100)

v

(2007, 80), (2006,80)

(2005, 90), (2006,100)

v

(2006,[100, 80])

(2006,90)

v

(2007, 80), (2006,80)

(2007,[95, 80])
(2007,87.5)

MapReduce In-class Exercise

 The problem is with the combiner!

* Hereis a simple counterexample:
— (2007, 100), (2007,90) -> (2007, 95)
(2007,80)->(2007,80)
— Average of the above is: (2007,87.5)
— However, the real average is: (2007,90)

 However, we can do a small trick to get around this
— Mapper: (2007, 100), (2007,90) -> (2007, <190,2>)
(2007,80)->(2007,<80,1>)
— Reducer: (2007,<270,3>)->(2007,90)

MapReduce Example: Average Temperature

(200707,100), (200706,90)
(200508, 90), (200607,100)
(200708, 80), (200606,80)

(2007,100), (2007,90) (2005, 90), (2006,100) (2007, 80), (2006,80)

v
Vv

(2007,<190,2>)
(2005,[<90,1>]) (2006,[<100,1>, <80,1>]) (2007,[<190,2>, <80,1>])

 Reduce Il

(2005,90) (2006,90) (2007,90)

(2007, <80,1>),
(2006,<80,1>)

(2005, <90,1>),
(2006, <100,1>)

Mapper and Reducer of Average Temperature

* Map(key, value){ Combine(key, list of values){
// key: line number // key: year
// value: tuples in a line // list of values: a list of monthly

for each tuple t in value: temperature

Emit(t->year, t->temperature);} int total_temp = 0;

for each v in values:

« Reduce (key, list of values){ total_temp= total_temp+v;

/[key: year Emit(key,<total_temp,size_of(list of
/1 list of values: a list of <temperaturie,ajyes)s):}

sums, counts> tuples
int total_temp =0;
int total _count=0;
for each v in values: Combiner is different
total_temp= total_temp+v->sum; from Reducer!
total count=total count+v->count;

Emit(key|total_temp/total_count)|}

MapReduce In-class Exercise

* Functions that can use combiner are called
distributive:
— Distributive: Min/Max(), Sum(), Count(), TopK()
— Non-distributive: Mean(), Median(), Rank()

Gray, Jim*, et al. "Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-
totals." Data Mining and Knowledge Discovery 1.1

(1997): 29-53.

*Jim Gray received Turing Award in 1998

Map Reduce Problems Discussion

* Problem 1: Find Word Length Distribution

e Statement: Given a set of documents, use
Map-Reduce to find the length distribution of
all words contained in the documents

* Question:
— What are the Mapper and Reducer Functions?

12:1
MapReduce 7:1
This is a test data for 6 1
the word length 4: 4
distribution problem 3.2
2:1
1:1

Map Reduce Problems Discussion

* Problem 1: Find Word Length Distribution
 Mapper and Reducer:
— Mapper(document)
{ Emit (Length(word), word) }
—Reducer(output of map)

{ Emit (Length(word), Size of (List of words
at a particular length))}

Mapper and Reducer of Word Length
Distribution

 Map(key, value){
// key: document name
// value: words in a document
for each word w in value:

Emit(length(w), w);}

 Reduce(key, list of values){
// key: length of a word
// list of values: a list of words with the same length
Emit(key, size of(list of values));}

Map Reduce Problems Discussion

* Problem 2: Indexing & Page Rank

e Statement: Given a set of web pages, each
page has a page rank associated with it, use
Map-Reduce to find, for each word, a list of
pages (sorted by rank) that contains that word

e Question:

— What are the Mapper and Reducer Functions?
Word 1: [page x1,

> page x2, ..]

Word 2: [page y1,
pagey?2, ...]

MapReduce

Map Reduce Problems Discussion

* Problem 2: Indexing and Page Rank
 Mapper and Reducer:
—Mapper(page id, <page text, page rank>)
{ Emit (word, <page_id, page_rank>) }
—Reducer(output of map)

{ Emit (word, List of pages contains the
word sorted by their page_ranks)}

Mapper and Reducer of Indexing and
PageRank
 Map(key, value){
// key: a page
// value: words in a page, page_rank
for each word w in value:
Emit(w, <page_id, page _rank>);}
 Reduce(key, list of values){
// key: a word
// list of values: a list of pages containing that word
sorted pages=sort(list of values, page rank)
Emit(key, sorted pages);}

Map Reduce Problems Discussion

* Problem 3: Find Common Friends

e Statement: Given a group of people on online
social media (e.g., Facebook), each has a list of
friends, use Map-Reduce to find common
friends of any two persons who are friends

e Question:

— What are the Mapper and Reducer Functions?
=08 ad
flen Bl b

Map Reduce Problems Discussion

* Problem 3: Find Common Friends

* Simple example: Input:
A->B,C,D

B->A,CD
C->A,B
D->A B MapReduce

A - C

Output:

B D (A ,B)->C,D
(A,C)>B
(A,D) -> ..

Map Reduce Problems Discussion

* Problem 3: Find Common Friends
 Mapper and Reducer:
—Mapper(friend list of a person)
{ for each person in the friend list:
Emit (<friend pair>, <list of friends>) }
—Reducer(output of map)

{ Emit (<friend pair>, Intersection of two
(i.e, the one in friend pair) friend lists)}

Map Reduce Problems Discussion

* Problem 3: Find Common Friends

 Mapper and Reducer:

Input:

A->B,C,D
B->A,CD
C->A,B
D->A,B

Map:

Reduce:

Suggest
Fiends ©

(A,B) -> B,C,D

(A,B) -b[c,D

(A,C) -> B,C,D
(A,D) -> B,C,D

(A,B)->A,CD

(B,C) -> A,C,D
(B,D) -> A,C,D
(A,C)->A,B
(B,C) -> A,B
(A,D) -> A,B
(B,D) -> A,B

(A,C)->B
(A,D) -> B
(B,C) > A
(B,D) -> A

Mapper and Reducer of Common

Friends
 Map(key, value){

// key: person_id
// value: the list of friends of the person
for each friend f_id in value:
Emit(<person_id, f_id>, value);}
 Reduce(key, list of values){
// key: <friend pair>
// list of values: a set of friend lists related with the friend pair
for v1, v2 in values:
common_friends = v1 intersects v2;
Emit(key, common_friends);}

Map Reduce Problems Discussion

* Problem 4: Unique User Count

e Statement: You have a set of documents
containing the web browsing records for a
company in the form of:

— Record x [User _id, Visit_Date, Url]
Use Map-Reduce to count the number of unique
user visits of the company web pages per day.

* Question:
— What are the Mapper and Reducer Functions?

Map Reduce Problems Discussion

* Problem 4: Unique User Count
 Mapper and Reducer:
— Mapper(records)
{ for each record in records:
Emit (day, user_id) }
—Reducer(output of map)

{ Emit (day, count of unique user _id
appearing on this particular day)}

Mapper and Reducer of Unique User Count

 Map(key, value){
// key: name of a browsing record document
// value: the list of browsing records in the document
for each record r in value:
Emit(r->date, r->user_id);}
 Reduce(key, list of values){
// key: date

// list of values: a list of users who visit on the day specified
by the key

unique_list = unique (values)

Emit(key, size_of(uniuge_list));}

Map Reduce Problems Discussion

* Problem 4: Unique User Count

* Q: How to solve this problem by just using
the word count program (i.e., do not use the
unique function in the reducer)?

Map Reduce Problems Discussion

* Problem 4: Unique User Count
 Two rounds of Map Reduce:
— Round 1:
* Mapper(record)
{ for each record in records:
Emit (<day, user_id>, 1) }
e Reducer: same as word count
— Round 2:
* Mapper (output of round 1)
{for each item in list of (<day, user_id>, count)
Emit (day, 1)}
* Reducer: same as word count

Mapper and Reducer of Unique User Count

 Mapl(key, value){
// key: name of a browsing record document
// value: the list of browsing records in the document
for each record r in value:
Emit(<r->date, r->user_id>, 1);}

e Reducel: same as word count reducer

 Map2(key, list of values){
// key: <date, user_id>
// list of values: a list of counts related with the key
Emit(key->date, 1);}

 Reduce2: same as word count reducer

Map Reduce Problems Discussion

* Problem 4: Unique User Count

* What if we have records from multiple
companies mixed together, we want to find
the unique user count per day per company?

e Similar solutions, just change the <key,
value> pair.

Mapper and Reducer of Unique User Count

e Map pl(key, value){
// key: name of a browsing record document
// value: the list of browsing records in the document
for each record r in value:
Emit(<r->company_url, r->date, r->user_id>, 1);}
* Reduce pl:same as word count reducer

 Map_p2(key, list of values){
// key: <company_url, day, user_id>
// list of values: a list of counts related with the key
Emit(<key->company_url, key->date>, 1>);}

* Reduce_p2: same as word count reducer

Big Data Processing 2 Summary

Map-Reduce:
— Map-Reduce Paradigm: Mapper and Reducer

— What is the key and what is the value and list of
values?

— Combiner and Distributive Functions
— Practice makes perfect©

Enjoy MR and Hadoop ©

