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Green GPS Map Interface
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Key Points

* GreenGPS uses participatory sensors to
determine a fuel-efficient route between two
arbitrary end-points.

e Utilizes the OBD-Il interface to retrieve data
from sensing automobiles

 The most fuel-efficient route is not always the
shortest or fastest



Green GPS Goals

* Long term Goal:

— Develop a fuel efficient navigation service using
participatory sensing to influence routing
decisions of individuals

e Short term Goal:

— Accurate fuel consumption prediction model

— Experimental deployment to analyze fuel savings,
average savings of 10%



Why Green GPS?

200 million light vehicles on the streets

Each driven 12000 miles annually on
average

Average MPG (Miles Per Gallon) is 20.3
miles/gallon

118 Billion Gallons of Fuel per
year!

Savings of 1% = One Billion
Gallons (2~3 Billion $)

* The above data are from Environment Protection Agency
(EPA) Statistics



Share your thoughts

* How would you design such an green navigation
service using participatory sensing paradigm?
— Assume you have a group of participants (drivers).

Each of them has a smartphone with GPS, WiFi and
Bluetooth, etc.)

— You can get the parameters of their vehicles (e.g.,
current speed, total fuel consumption, fuel
consumption rate, time, etc.) through a special on
board device (OBD-II)

 What are the key challenges of designing this
service?
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Small Scale Feasibility Study

 Three different cars and drivers between
Urbana-Champaign landmarks

— Shopping Center, author’s office and football
stadium

— Shortest and fastest routes calculated using
MapQuest (http://www.mapguest.com/ )




Small Scale Results
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GreenGPS: Fuel Efficient Routing

* Fuel efficient route different from
shortest or fastest route ->Why? Source: US EPA

® Congestion, number of traffic
regulators -> shortest may not be fuel
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* |ndividuals record fuel-related
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commutes \ i

* Share the sensor data in a
community to build fuel map of a
given area




On Board Diagnostic (OBD-Il) System

e Cars manufactured after 1996 equipped with On
Board Diagnostic (OBD-Il) System

* OBD measures engine parameters
(e.g., fuel consumption, RPM, speed,
etc.)

e Commercial OBD scanners available

e An estimated 200 millions cars and
light trucks are on the roads in U.S

Large scale car

sensor network

Cell phone Wireless OBD



GreenGPS Users

 Members (Subscribers):
— Have OBD-Il Equipment
— Upload their data to the service

— Just query tuel ethcient routes from
— Does not share their measurements

— Approximate answers based on the average
estimation based on car’s make, model, year



Fuel Consumption Modeling

Ideal scenario: all cars collect data on a LOT of
streets

Current situation: few individuals with OBD
scanners

Challenge: sparse deployment and data to model
complex phenomena

Question: Can we generalize a few measurements
on a few cars to predict fuel consumption of an
arbitrary car on an arbitrary street?



Sampling Regression Modeling Framework

RYad EREE

Fuel consumptions of few cars on a few streets to predict
fuel consumption of any car on any street?




Simple Prediction: Average MPG

* Uniform distribution of mpg and high standard
deviation (standard deviation=9.12 mpg)

Nearly
Uniform

MPG Distribution

10 20 30 40 50

<€ MPG >

Deviation is too high




Model Structure Deviation

* Simple model for fuel
consumption derived from
physics principles e

o
< '\{\»\\0\
10

* What kind of features/parameters should we
consider in order to predict the fuel
consumption of a trip for a given car?



Model Structure Deviation

* Simple model for fuel
consumption derived from
physics principles |

£

N0

* Approximate based on easily measurable
parameters (e.g., stop signs, speed limits)
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Individual Car Models

e Split data into 1 mile segments (segment
length determined empirically)

* Individual models: how can we predict a car’s
fuel consumption on a different path?

Car make Car model Cumulative
Exrror %

Hyundai Santa Fe 2008 2.89
Honda Accord 2003 0.89
Ford Contour 1999 0.83
Ford Focus 2009 0.12
Ford Taurus 2001 0.75
Toyota Corolla 2009 0.75




One Size Fits All?

* Generalize: Use model computed from all data to
predict fuel consumption of a car that lacks
previously measured values

Car make Car model Cumulative
Error %

Santa Fe 23.63

Honda Accord 2003 15.3
Ford Contour 1999 91.4
Ford Focus 2009 27.35
Ford Taurus 2001 24.85
Toyota Corolla 2009 89.97




Generalization Hierarchy

e Derive a hierarchy for prediction using the sampling
regression framework when data for a specific car is

missing
yr —N

=

Q: What if a car is
encountered for which
we do not have data on
its (make, year)?

Q: What if there are no
models corresponding to
either make or year for
the car?

Example: 2001 compact Ford is modeled differently from a 2001
mid-size Ford, a 2002 compact Ford or a 2001 compact Toyota.



Generalization Hierarchy Evaluation Results

e Evaluate model performance using this

framework
Hyundai Santa Fe 2008 0.73
Honda Accord 2003 1.01
Ford Contour 1999 1.42
Ford Focus 2009 2.7
Ford Taurus 2001 3.38
Toyota Corolla 2009 1.28




Green GPS System Implementation

* Open Street Map (OSM) database

* Routing: think of it as weighted Dijkstra’s
algorithm with weights as fuel consumption
on road segments

* Microsoft Bing maps based interface for input
and output route display

* Preliminary system:
http://green-way.cs.illinois.edu/GreenGPS.html




GreenGPS Modules
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Evaluation

Performed in two stages

— Stage 1 — Use to predict end-to-end fuel
consumption for long routes

— Stage 2 — Evaluate potential fuel savings of an
individual using GreenGPS



Preliminary Deployment

DashDyno — OBD scanner with
GPS to collect location tagged
car sensor data

16 different compact and mid-
sized sedans, e.g., Ford,
Toyota, Honda

Over 1000 miles of data
collected

Users record sensor data and
GPS on SD card and upload to -l

the backend server ijL

Coverage map




Cars Used in Experiments

Car make | Car model | Car year il\/Iiles driven
1 Ford Taurus 2001 135
Toyota Solara 2001 45
BMW 3251 2006 70
Toyota Prius 2004 140
Ford Taurus 2001 136
Ford Focus 2009 05
Toyota Corolla 2009 45
Honda Accord 2003 102
Ford Contour 1999 22
Honda Accord 2001 18
Pontiac Grand Prix 1997 25
Honda Civic 2002 11
Chevrolet Prizm 1998 16
Ford Taurus 2001 10
Mazda 626 2001 9
Toyota Celica 2001 120
Hyundai Santa Fe 2008 22




Model Accuracy
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* Left: Remove the path but calculating prediction from
the same car on different paths

e Right: Remove all data from that car and use
hierarchical method to find an appropriate model

 Both version have normal distribution with a near
zero mean (long term savings)

* Path error is reduced with the length of the travel



Fuel Savings Evaluation

* Experiments on five cars, each does four round-trips
between 2 landmarks in Urbana-Champaign on fastest

and shortest routes
* GreenGPS predicts fuel efficient route between fastest
and shortest always correctly

GreenGPS Route
H1 to Mall Shortest 31.4
Honda Accord 2001
H1 to Gym Shortest 19.7
Ford Taurus 2001 H2 to Restaurant Shortest 26
Toyota Celica 2001 H2 to Work Fastest 10.1
Nissan Sentra 2009 H3 to CUPHD Fastest 8.4
Honda Civic 2002 Grad to Work Fastest 18.7

Average fuel savings across 5 cars



Lessons Learnt

Experience with GreenGPS

— Data cleaning is important
* Sometimes GPS would not provide/record data to DashDyno

* Some cars used metric while others used imperial systems
* Need to filter complete datasets

— Privacy
e User activity is traced via GPS
e User can turns this off but this affects data

— What incentives should be provided to the user?
* Need to mitigate sparse data
* Free gas or mutual benefits or more? (e.g., 1 mile -> 1 dollar)



Limitations

* What important limitations do you observe
about GreenGPS service?



Limitations

* GreenGPS should eventually be a real-time
service since traffic condition changes quickly
over time. This paper does not explore time
dimension!

* Fuel consumption is also a function of driver’s
behavior (e.g., abrupt break and acceleration),
which is totally ignored in the paper due to
the small sample size of the users



Limitations

e Cars used in the experiments are mostly
compact and mid-sized sedans. A broader
range of vehicles (e.g., SUVs, minivans, light
trucks) should also be considered.

* Experiments have been done in a quiet college
town. Hence it is not clear if the model will be
accurate for large cities (where traffic and
road conditions can be quite different)



Conclusions

* Demonstrate the use of participatory sensing
system to predict fuel consumption of an
arbitrary car on an arbitrary street

* Show a 6% on average savings vs shortest
route and 13% savings over fastest route

* Demonstrate how to generalize sparse
samples of high dimensional spaces to
develop models of complex non-linear
phenomena-> one size does not fit all!
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Traffic Signals - GLOSA

* Traffic signals:
(+) Provide safety.

(-) Enforce a stop-and-go movement pattern.
* Increases fuel consumption by 17%*.
* Increases CO, emissions by 15%*.

* Source: Audi
Travolution Project

* Solution: Green Light Optimal Speed Advisory

(GLOSA).

w/o

GLOSA: LIS

N Need to know the
GLOSA: @ schedule of traffic signals.




Signal Schedule Advisory Systems
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Signal Schedule Advisory Systems
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Signal Schedule Advisory Systems
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Signal Schedule Advisory Systems
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Signal Schedule Advisory Systems
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Audi Travolution
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Signal Schedule Advisory Systems
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Signal Schedule Advisory Systems

Infrastructure Continuous | Advance

Predictability

Cost Advisory | Advisory

Pedestrian
countdown timers

Vehicular
countdown timers

Road-side speed
message signs

Audi Travolution $ $ $

SignalGuru None




Share your thoughts

* How would you design such a speed advisory
system using smartphones in cars?

 What are the key challenges you can envision?



SignalGuru Approach
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Challenges

Commodity cameras. Low video resolution:
— iPhone 4: 1280 x 720 pixels.
— iPhone 3GS: 640 x 480 pixels

Limited processing power.
— But need high video processing frequency.
Uncontrolled environment.

Traffic-adaptive traffic signals.

— Singapore traffic signal system using inductive
loop detectors

Non-challenge: Energy.



SignalGuru Architecture
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Detection Module

Detects signal current status

(Red/Yellow/Green) from video.

Activated based on its GPS
location (<50m) to the
intersection

Process a new frame every 2sec.

Main features:

— Bright color.

— Shape (e.g., round, arrow).
— Within black housing.

— Location in frame (detection
window).
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| IMU-based Detection Window
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Process only area within detection window.

e Cuts off half of the image:

— Processing time reduced by 41%.
— Misdetection rate reduced by 49%.

Roll angle w is calculated by gyro and accelerometer (inertial



Transition Filtering I\/Iodule
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Transition Filtering Module

* Filters out false positives.
* Low Pass Filter:
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Collaboration Module
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Why?
— A node is limited in its vision

— A node needs information ahead
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Prediction I\/Iodqle
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Phase Length prediction:

Pre-timed signals: Look-up in database.

Traffic-adaptive traffic signals: Predict
based on history of settings using machine
learning (SVR).
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SignalGuru/GLOSA iPhone Application

Ad]ust Exposure Detection:
Residual amount )
of time in sec until (0] -
the traffic signal
turns green.

Advisory

Res!dua-I amount.
of time in sec until
the traffic signal

a
turns red again.

Recommended 11.9 mph

GLOSA speed.




SignalGuru
Evaluation
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Cambridge: Prediction Accuracy Evaluation

Cambridge (MA, USA)
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* Pre-fixed traffic signals

* Experiment on Massachusetts Errory,q ag. = 0-66sec (2%).
Ave:

* 5 cars over 3 hours. The error was solely caused by

* 1 pedestrian node serves
as the relay nodes




Singapore: Prediction Accuracy Evaluation

Singapore

e
THwTIm

I

B detection module error

I

w
U

ate Error (s)

E prediction module error

| T

SignalGuru accurately predicts both pre-

w

Phase A Phase B Average
 Traffic-adaptive traffic * | Errory e aqe = 2.45sec (3.8%).
signals * | Errory . sition betection = 0-60sec (0.9%).

« Experiment in downtown: . I Errorp,ase Length prediction = 1-855€C (2-9%)|

e & carsover 30 min.

e 2signals, 26 transitions.




Evaluation: GLOSA Fuel Savings
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Evaluation: GLOSA Fuel Savings
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* Without GLOSA driver made on average 1.7/3 stops.

Average fuel consumption reduced by 20.3%.
Mpg improved by 24.5% (16.1->20.1 mpg).



Limitations

 What limitations do you observe about Signal
Guru?



Limitations

* The paper did not discuss the issue of user’s
adaptability to this technology.

— It might change user’s driving behavior
— It might affect the car that is behind you

* |t does need sufficient cars with the

SignalGuru app to participate and share their
detected signal transition traces



Limitations

* The prototype has only been tested on limited
number of roads in two cities

— Large city and busy roads may introduce more
noise

* The privacy issue has not been discussed

— People are sharing their GPS traces with each
other



Other related applications

Traffic Signal-Adaptive Navigation
— Suggest better route to avoid long-waiting traffic signals

Red Light Duration Advisory

— Driver can switch off engine to save fuel and decrease
environment impact during long wait red lights

Imminent Red Light Advisory

— Let the driver know the residual amount of time before
the signal turns red to avoid unnecessary speeding

Red Light Violation Advisory

— Warns the driver when they are about to violet red
lights using the signals detected and accelerometers on
the phone



Conclusions

* With selective accelerometer- and gyro-based
image detection and filtering near real-time, the
accurate image processing can be supported.

* SignalGuru predicts accurately both pre-timed
and traffic-adaptive traffic signals.

e SignalGuru-based GLOSA helps save 20% on gas.



