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Papers

e Paper 1: "Energy-optimal Batching periods for
asynchronous multistage data processing on
sensor nodes: foundations and an mPlatform
case study." Wang, Dong, et al. Real-Time
Systems 48.2 (2012): 135-165.




Background

* Energy

— primary concern in sensor network

— much energy consumed in idle state

— build more energy economic processor

e Time:
— critical to real time and control related tasks
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— specified as end to end deadline




Background

e Microserver
— Fast speed

e mPlatform
— Heterogeneous platform

— Multi-processor boards,
multiple radios




Background

High-end Low-end
Processor Processor
Active Power High Low
Speed Fast Slow
Wakeup Cost High Low

Q: Do you have some intuition how high-end
processor can be used to save energy when
it is used to process a batch of data?



Background

High-end Low-end
Processor Processor
Active Power High Low
Speed < Disproportionately >’Slow
-Faster _
Energy/Unit Low € High
Wakeup Cost High) Low

Process data in batches to save energy!

Key Challenge: Batching Period should be carefully designed to
1. Exploit heterogeneity to minimize energy consumption

2. Meet time requirement of the data processing




Model
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* Data-centric Model nd to end deadline
* Tasks run on batching period to process data
* Asynchronous

* Multistage



A Task Set Example

Low-end
Processor

End to End Deadline: Associated with a Path




Problem Statement

* Energy to execute a task on processor k:
EX=E “+E

i wakeup i datarate i
k

wakeup i ; data independent cost (wakeup, state storage)

k
daarate i - data dependent cost (computation, data transfer)

e Average power to execute a task:
k k

E E
k wakeup i k k datarate i
I datarate i datarate i
P - - P
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P : Batching period of task i on processor k

2 Z P < D D : End-end deadline on path p
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Problem Statement

* Goal: to find optimal batching period P," for each
task to minimize

E
=Y (—

keup
1<i<n B

k

i ‘|‘W k)

datarate i

e Subject to the constraint

Y P<D /2

i:T.ep



Optimal Batching Period

* Method: Lagrange function

k

L 2( Wakeupl +Vl/dataratez)+ z Z’(ZP D /2)

1<i<n 1< p<m iTep
e Solution:

. [EF *
E — wakeup i 2 B :Dp/z
\ 2 Z /11? rTep
pTep

Solutions can be computed numerically

For particular task allocation: Ignore task index for notation simplicity



Chain Task Topology

e Chain topology: ‘—"—

— n tasks T,...T, form a single path p

e Optimal Batching Period:

. VEview i D,

S B, 2

i:T,ep

e Theoreml1: Chain Period Allocation:

P1 ;P2 Do : Pn
(Ewakeup_l)l/2 : (Ewakeup_z)l/2 o : (Ewakeup_n)l/2

Dp/2
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Chain Task Topology

e Theorem 2: Chain Reduction

(X B )

E
wakeup _eq — 1<i<n
P* + VVvdatarate_i _ D /2 + Z Wwakeup_i
eq p I<i<n
P1L : P2 ... © Pn Evvakeup.eq=1 SUM (Eyyaiceun. )2
(Ewakeup_1)1/2 : (Ewakeup_z)l/2 : : (Ewakeup_n)l/2 -
Dp/2 Peq=Dy/2
P,=2s P,=2s P;=3s P —6s
€q

o o -
Ewakeup_1=1 wakeup 2= Ewakeup_3=9 P1=6*(]_/(1+2+3))= 1s;

< > P,=25s;P,=35;

Dp=12s E =36; P, =6s

wakeup_123 ' eq 13



Star Task Topology

e Star Topology

— Outputs of n tasks T,...T,, (leaf tasks) are
inputs to a single task T, (aggregator task)

— Assume: all paths have same D,

e Optimal Batching Period.:

*

P =

T,

IS <n »

|

2
z E wakeup | T \/E wakeup ()
1<j<n

\f E wakeup () D D

Po*:\/

Z E wakeup _j +\/E wakeup () 2

1<j<n

e ® @

e Theorem 3:

Star Period Allocation:
. Dp/2 .

Pi : PO

(Sum (E )¥2): (E )12

wakeup_j wakeup_0
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Star Task Topology

< Dp/2 > Dp/2
* Theorem 4 | 11| <

Star Reduction -\- — - -

v

- / E =Sum E
Pi : PO

wakeup_eq wakeup_i 7

P,=Pi : PO
P,=3s P,=3s

. Evakeup 171 . Euvakeup_3=4

.

E 9 Ewakeup_0=16

wakeup_123=

Ewakeup_0=16
P,=P,=P,=7*(9%/2/(9/2 +161/2))=3 s;
Dp=14 s P,=7-P;=4s

Ewakeup_123=9;
4 15

wakeu p_2=



Period Allocation in Aggregation Tree

P,=7.5s P,=7.5s p12-15 S

P;=9s
wakeup_2=4 5 E pvakeup, 12 -(2 +2)2_15\A P.=9s

Ewakeup_1=4 E
P,=8s P,=20s =) -5
Ewakeup_5=9 - EwakeUp_5=9
= 2—
Ewakeup_3=1 Ewakeup_4=4 Ewakeup 34~ (1+2)
Deadline =48 s Deadline =48 s
P1,3,=05/8)*24=15s P.= #3/8)*24=9 s ;
wakeup 1234~ =16+9= 25 wakeup 5=

< »
< >

Deadline =48 s
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Heterogeneous Task to Processor Assignment

 Parameters E W are processor dependent

wakeup i, datarate_i

* Period allocation: not entirely separable from task-processor
assignment

* In general, number of tasks on sensor nodes are quite limited
(e.g. 5-10)

* Run optimal period allocation for each possible task-
processor allocation, find optimal solution

* Simple Heuristics can be derived to find optimal solution with
high probability



Task to Processor Assignment Heuristics
hi lo

E wakeup i hi E wakeup i lo (%
P* + Wdatamte_i < P* + Wdatamte_i ( )
l l
1. Run optimal batching period allocation assuming all tasks are allocated to

higher-end processor (ARM)
2. Test resulting optimal batching periods for satisfying inequality (*). If a task Ti

fails the test, move to lower-end processor (MSP)

3. Repeat optimal batching period allocation based on new task-processor
assignment, check to see if it is different from the one got before step 2:
different-go back to step2; same: reach (locally) optimal solution

Note: the allocation found by heuristics is locally optimal, but it has a high
probability to find global optimal



Evaluation

e Evaluation platform: mPlatform

— Heterogeneous sensor platform: multiple
processor boards, multi radios

— MSP Board: MSP430F2618 processor
— ARM Board: LPC2138 processor
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Experiment Setup

20



Energy Profile

Parameter MSP ARM
Frequency I6MHz | 60MHz
Active Current (mA) 71 8.6l 75 N
Active Power (mW) N38.745 | 337,57
Sleep Current (1 A) 17 150
Sleep Power (W) 76.5 675
Wakeup time (ms) 0.7 3
Wakeup energy (p.J) q7.43 2174
Flash access energy (pu.J/byte) 0.826 1.422
Inter-board Transfer time (us/byte) 2
Inter-board Transfer energy (p.J /byte) 0.65
Sensing Energy (u.J /byte) 1.64

Energy Profiling Comparison of MSP Board and ARM Board.

Board Supply Voltage is 4.5V.
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Comparison of Basic Operation on Two
Processor Boards

ARM MSP
OPERATION Data Type | Time(ps) | Engggmtw]) | Time(us) | Energy (uJ)
uint_32 0.66 N.22275 \| 162 0.62767
Multinlv uint_16 0.66 0.22275 9.8 0.37970
WHPY Micar I.21 0.40838 706 070815
double 1.9 0.641235 20.9 0.80977
uint_32 1.12 0.378 26.5 1.02674
. uint_16 12 N\ 0378 /[ 101 030132
Divide o 245 261 362 L2
, _ double 832 7508 26.2 JAIED
ARITHMETIC uint_32 0.61 0.20588 22 J0.08524\
Add uint_16 0.66 0.22275 1.4 J0.05424'\
float 1.5 0.50625 10.1 J 039132\
double 2.1 0.70875 0.2 | 03952\
uint_32 0.61 0.20588 2.2 0.08524
Subfract  |_UIILI0 0.66 0.22275 T3 0.05424
ubtracl —ear 15 050635 01 0.39132
double 2.2 0.7425 10.2 1.3952
\ uint_32 0.48 0.162 1.6 0.06199
AND uint_16 0.48 0.162 1.2 0.04649
OR uint_32 0.48 0.162 l.68 0.065049
uint_16 0.49 0.16538 1.2 0.04649
BIT OPERATION OR uini32 040 0.16538 I8 0.06199
¢ uint_16 0.49 0.16538 1.2 0.04649
- uint_32 0.46 0.15525 LN 0.14336
SHIFT e 03 0.16575 34 0.13173
uint_32 0.64 0.216 24 0.09299
\ <= uint_16 0.68 0.2295 1.7 \ 0.06587
RELATION =+ float .18 0.39825 3.6 \ 0.13948 ]
double 135 0.45563 36 \0.13943 ]
AND OR
LOGIC NOT All 0.31 0.10463 0.7 \llz? 1/
N\
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Task Set Generation

* Representative routines in sensor network

and digital signal processing are selected:

— e.g: Digital Filter, Fast Fourier Transform (FFT), Statistic,
CRC, Checksum, Encryption/Decryption

e Several task template that represent typical
data processing and aggregation:

oo | | e
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Energy Consumption (uJ)

Flash Access
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Normalized Power Increase over Optimal Batching(%)
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Normalized Power Increase over Optimal Batching(%)

Experiment with Batching Period-2
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Heterogeneous Energy Savings over MSP alone (%)

Experiment with
Optimal Task Assignment

Number of Tasks

Heterogeneous Assignment vs MSP

Heterogeneous Energy Savings over ARM alone (%)
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Energy Increase of Heuristic Task Allocation (%)

Task-Processor Heuristic Performance
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Tradeoffs between Energy Savings and
Responsiveness
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Energy savings of using batching periods decrease as end-




Energy Cost of Asynchrony

[ I

Energy Cost of Asynchrony (%)
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Number of Tasks
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Conclusion

Minimize energy of asynchronous multi-stage data
processing with time constraints

Optimal batching period allocation for data
aggregation in sensor network

Task to processor assignment is coupled with period
allocation

Evaluation on heterogeneous sensor platform-
mPlatform



Papers

e Paper 2: "ACE: exploiting correlation for
energy-efficient and continuous context
sensing." Nath, Suman. Proceedings of the
10th international conference on Mobile
systems, applications, and services. ACM,

2012. (Best Paper)

SMARTPHONE
ENERGY

---------



Continuous Context-Aware Apps

i

Mute Alert when Monitor Custom
How much ) .
do | jog? phone in at grocery indoor message on
Y meeting shop | location driving
Jog Tracker Phone Buddy Geo-Reminder Batphone Phone Buddy

Continuous sensing of user’s context

LEORM N i
Ol =8 E




Sensing Context is Expensive

5:20 PM —
9 Send a Glympse s
To:
& ¢
Details: |
@ Message 7
m‘a Destination 7

Current Location:
\ & £ 1Y

3 3

& ("\
NE 124th St 4 )

; 9/

Google ~
 Three orders of magnitude difference
— Some apps limit how long to sense

* Our goal: push the limit



Sensing Context is Expensive

Sensors

IsWalking, IsDriving,
IsJogging, IsSitting

Sensing Energy (m))

AtHome, AtOffice

Isindoor

IsAlone

InMeeting,
IsWorking

Q: What kind of sensors can be used to detect the

above context?



Sensing Context is Expensive

Context Sensors Sensing Energy (m)J)
IsWalking, IsDriving, Accelerometer

IsJogging, IsSitting (10 sec) 259

AtHome, AtOffice WiFi 605

Isindoor GPS + WiFi 1985

IsAlone Mic (10 sec) 2995
InMeeting, WiFi + Mic 3505
IsWorking (10 sec)

* Three orders of magnitude difference

)
A

voehvial Sneigy Sauvings by inleiring the

S s A e uh s from Cheaper ones
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Sensing Context is Expensive

Context Sensors Sensing Energy (m))
IsWalking, IsDriving, Accelerometer

IsJogging, IsSitting (10 sec) 259

AtHome, AtOffice WiFi 605

Isindoor GPS + WiFi 1985

IsAlone Mic (10 sec) 2995
InMeeting, WiFi + Mic 3505
IsWorking (10 sec)

* Three orders of magnitude difference

Q: How would you use cheap attributes to
infer more expensive ones?



ACE: Acquisitional Context Engine
Low-energy continuous sensing middleware

Goal: Reduce the Cost (Energy) of Context Sensing

Approach: Opportunistically infer expensive
attributes from cheap attributes

Conjecture: Relationship of expensive and cheap
attributes can be learnt automatically

Intuition: Human activities constrained by physical
constraints

— Behavior invariants: Driving implies Not At Home

38



ACE Big Picture

Appl

App2

App3

App4

xr

Get(attribute)

ACE

Raw Sensor Data

39



Get(Driving)=True

ACE Big Picture

Appl App2 App3 App4
A
Sensing
Get(attribute)
/ Conte)rters\
N Inference Cache

0| @ " Driving

o =H 5 =

) 8 -~ =

TE= Rt RS

<|S|°|x Correlation Miner
\ j Driving -> Not AtHome

—>

Running -> Not InMeeting

Raw Sensor Data
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Get(Driving)=True

ACE Big Picture

Get(Driving)=True  Get(AtHome)=False

Appl App2 App3 App4
A
Sensing Hi'{\ Inferé\w\ce Hit
Get(attribute)
4 AN
Contexters
| 1 Inference Cache
0| " Driving
ERE Bc BE
ORY IS B<
am — BS
| =2l a1 3 . . \
=L B c o Correlatjon Miner
\& J/ Driving -> Not AtHome\i

—>

Running -> Not InMeeting

Raw Sensor Data
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ACE Big Picture

Get(Driving)=True  Get(Driving)=True  Get(AtHome)=False Get(InMeeting)=False

Appl App2 App3 App4

A
Sensing Hi'{\ I}fg”ence Hit Prox} sensing

Get(attribute)
\/

4 Contexters\ )

1 Inference Cache ' Speculative

Running Sensing
y

AtHome
Driving
Running

Correlation Miner
Driving -> Not AtHome
Running -> Not InMeeting

InMeeting

/
\<

—>

Raw Sensor Data
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ACE Big Picture

Get(Driving)=True  Get(Driving)=True  Get(AtHome)=False Get(InMeeting)=False

Appl App2 App3 App4

A
Sensing Hitr\ I}}gence Hit Prox'P sensing

Get(attribute)
@ Contexters — A I
' (| Inference Cache i Speculative .

Automatic process

No semantic meaning needed
Easy to extend with new Contexters



Disclaimers

* Not for apps requiring 100% accurate contexts
— Experiments show ~4% inaccuracy

* Current prototype
— Boolean attributes (categorical attributes)

— Uses correlations at the same time
e E.g., Driving -> Not at home
* Ignores temporal aspects of rules



Contexters

Attribute |$Short [ Sensors used (sample length)/| Energy (mJ)
IsWalking|| W Accelerometer (10 sec) 259
IsDriving|| D Accelerometer (10 sec) 259
IsJogging|| J Accelerometer (10 sec) 259
IsSitting|| S Accelerometer (10 sec) 259
AtHome H WiF1 605
InOffice 0 WiFi 605
IsIndoor I GPS + Wik1 1985
IsAlone A Microphone (10 sec) 2895
InMeeting|| M | WiFi + Microphone (10 sec) 3505
IsWorking|| R | WiFi + Microphone (10 sec) 3505
Interface:

1.Attribute Name
2.Energy Cost



ACE Workflow

Rule Miner

Infer fro'm cache

=

and rules

Mine @ Yes pesult—p
rules
4 |
Context —'_”."_
histo | ] v
\—/A)L\ "> |Choose best proxy
$ensor and sense
Contexters No
Sensors,

classifiers,costs

Sensing Planner




Key Questions

* Feasibility: Do useful correlations exist and
can they be efficiently learnt?

e System design: How to systematically exploit
the correlations?

» Effectiveness: How much energy savings?



Feasibility: Datasets

MIT Reality Mining Dataset MSR Dataset

95 students and staffs at MIT
Nokia 6600 phones, 2004-2005
min/avg/max: 14/122/269 days

10 interns and researchers
Android phones
min/avg/max: 5/14/30 days

10:
10:
10:
10:
10:

23

: 34
23:
23:
23:
23:

35
36
55
59

am
am
am
am
am

AtHome
Walking,Outdoor
Driving,Outdoor
Walking
InOffice

Context Attributes

Location: AtHome, InOffice,
Isindoor,

Task: InMeeting, IsWorking,
IsUsingApp, IsCalling,
Transportation mode: IsWalking,
IsBiking, IsDriving, IsSitting,

Group: IsAlone




Apriori Algorithm to Find the Rules

 Example: 1000 transactions, 200 include both
A and B, and 80 of the 200 also includes C.

e Association rule: (A,B) =>C
— Support: 80/1000=8%
— Confidence: 80/200=40%

* Parameters

— minSup (4% works well for ACE)
— minConf (99% works well for ACE)



Mining Behavior Invariants

10:

10
10

10:

10

10:

23:
:23:
:23:
23:
:23:
23:

34
35
36
50
55
59

am
am
am
am
am
am

AtHome
Walking
Driving
Driving
Walking
InOffice

Driving -> Not AtHome

{Indoor, Alone, Not AtHome}
-> InOffice

Rules = Patterns that almost always hold
Rules may be person-specific
We use association rule mining algorithms

See the paper for details



Addressing Rule Mining Challenges

* Choose the right window size to batch context
attributes to form transactions

* A user can change her context any time within a
window, hence dynamic windowing is necessary

- 5 min window is
—+=Fixed window size optimal (from data)
~@-Dynamic window size

0 10 20 30 40 50 60
Window Size (minutes)

[
]

o
00

o
)

o
»

ot
N

Fraction of rules learnt

o




Addressing Rule Mining Challenges

e Deal with low support
— Offload rule mining to a powerful backend server
e Deal with inaccuracies

— Do cross validation using ground truth results from
occasional user annotations

e Suppress redundant rules
— Use data mining algorithm to reduce the redundancy

* Bootstrapping

— Start with universal rules and update them with
personalized rules



Correlation Miner on Two Traces

e Useful correlations exist in our traces
— Avg. ~44 non-redundant rules per person

{IsDri some rules can be specific to a single user and may not

{Indoo
{Lsia gy SRRl foalSErs
IsDriving = F, IsWalking = F} = {Indoor =T

t = {In0ffice = T}

* Errors can be kept reasonably low (~ 4%)
— Take only rules with high confidence (~ 99%)
— Frequent cross-validation (1 in 20)



Key Questions

* Feasibility: Are there useful rules? Can we
learn them?

* System design: Systematically exploiting
correlation
— Inference Cache
— Speculative Sensing

» Effectiveness: How much energy savings?



Inference Caching

Get (Indoor) AND-OR Expressmn Tree

\Indoor - Infer

OR

Cache

‘%’iIndoor \InMeet:Lng \AtHome/ ;I:nOff:Lce?‘

FANEEVAN

AND
Indoor ->Indoor
InMeeting -> Indoor Infer Cache
InOffice  ->Indoor \S:Ltt:Lng) I‘f°"Alone/

AtHome ->Indoor
/““?;xﬁfig::7<\\\\5ij\

AND NotJogging  -> Sitting
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Speculative Sensing

* Goal: speculatively sense a cheap attribute to
determine value of an expensive attribute

— Infer InMeeting from IsRunning (e.g., 5pm)

* Challenge:

— Choose the next attribute to sense Cost c
e If infers target attributes, save energy Prob p
* If not, waste energy

— Goal: minimize expected cost
* Choose attributes with low c and high p



Example: InMeeting?

InMeeting?

l

Acquire WiFi,
Audio, Light,
Accelerometer

!

Answer

Traditional plan

2
3

InMeeting?
; 1

Time in T
— Accelerometer

[Spm,6pm]
jp
F
WiFi <——_IsJogging?
T
1 T Ans{wer
AtHome? = _ |
JF
Audio, Light, - Answer
GPS

ACE plan



Speculative Sensing

* Problem: Select next attributes to sense that
minimizes the expected total sensing cost

* NP Hard in general
— Probabilistic And-Or Tree Resolution (PAOTOR)

* ACE provides: (see paper for details)
— Dynamic programming : usable for <10 attributes
— Heuristic: Fast, close to optimal



Key Questions

* Feasibility: Are there useful rules? Can we
learn them?

e System design: Systematically exploiting
correlation
— Inference Cache
— Speculative Sensing

* Effectiveness: How much energy savings?



Evaluation Setup

Prototype on Windows Phone

1G CPU
512MB RAM —
Li-lon 1500 mAh Q
Battery
Mute Alert when
How |:nuch phone in at grocery
Collioel meeting shop

Three apps Jog Tracker Phone Buddy Geo-Reminder

IsWalking, isJogging, and IsDriving,InMeeting, AtHome, InOffice,

Effectiveness with MSR and Reality Mining traces
Performance on Samsung Focus Win 7 phone
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Hit Rate of Inference Cache

[0 Baseline Cache N Inference Cache
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1 -

Inference Cache has a much higher hit rate: return




Energy Savings by Sensing Planner

O Baseline
Sensing Planner (Exhaustive)
Sensi anher(Heuristics)

| 1 1 | | 1 ]

O NWAULONOOW
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Weightd
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u% g| §
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Weightd
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AceData RealityMining

' » \/E (0]

b-60% power compared to baseline



Overhead of ACE

008 I '[ _ RENOS = O Exhaustive-Avg Exhaustive-Max
0.03 - 1 ' 10000 - B Heuristics-Avg Heuristics-Max
; l 1 \
s 002 1 ¢ I §
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8% 2 .§ g i 8% 2 '§ g i §\
~E|loE| &8 | "E | GE | &2
£ & Tracker Reminder| Buddy | Tracker |Reminde
AceData RealityMiner AceData RealityMining
Time on Inference Cache Time on Speculative Sensing
(Cache Hit) (Cache Miss)

| Tme <0.1 ms; Memory < 15 M. Afordable on phones!
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End-to-End Energy Savings
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Average Latency (ms)
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What are the limitations you see?



Limitations claimed by author

* Fundamental: Occasionally inaccuracy in context
inference

— Rule mining parameters (support and confidence)
— Cache expiration time
— Cross validation frequency

e Non-fundamental

— Boolean attributes only (E.g., cannot capture the
user’s moving speed, etc.)

— Not exploit the temporal correlations between
attributes (E.qg., InOffice => Not at home for next 10
mins)

— Inference cache only returns the value of an attribute
not the confidence



Conclusion
Useful correlations exist across context attributes

ACE uses two key ideas to exploit correlation
— Inference caching
— Speculative sensing

Automatically avoids sensing as much as possible,
without requiring semantic information

Significant sensing energy savings (4.2x) at the
cost of small inaccuracies (~4%)



