Body Area Sensor Networks II

CSE 40437/60437-Spring 2015 Prof. Dong Wang

Paper

 Paper 3: Qi, Xin, et al. "RadioSense: Exploiting Wireless Communication Patterns for Body Sensor Network Activity Recognition." RTSS. 2012.

Background - Activity Recognition

 Activity Recognition aims to automatically recognize user actions from the patterns (or information) observed on user actions with the aid of computational devices.

Fall Detection

Sleeping Assessment

Depression Detection

Sensing-based Activity Recognition

Problem setting

A Dilemma – On One Hand

Sensing data transmission suffers body fading

A Dilemma – On the Other Hand

- To increase data availability
 - Increase transmission power

Consequences:

Increase energy overheads

Increase privacy risks

Transmission Range

A Dilemma – On the Other Hand

- To increase data availability
 - Using complicated MAC protocols

Consequence:

Increase energy overheads for retransmissions

Many existing works propose new MAC protocols to improve packet delivery performance in body sensor network.

However, the impermeability of human body is a large obstacle for transmission efficiency.

The Idea and Research Question

Idea

- As it is difficult to overcome the impermeability of human body, can we utilize it? If so, how?
- It is reasonable to imagine diff. activities have diff. patterns of packet loss and fading, which we call communication patterns.
- We use communication pattern for recognizing activities.

Proof of Concept Experiment

Proof of Concept Experiment

Communication Pattern

Factors Influencing the Discriminative Capacity of Communication Patterns

- Communication patterns
 - PDR
 - Influencing factor: transmitting power
 - RSSI features
 - Influencing factors: transmitting power, packet sending rate
 - A common influencing factor:
 - smoothing window size length of time window for extracting features
- How to optimize the above system parameters:
 - Through benchmarking

RadioSense – a Prototype System

Data Collection

- Aim to find insightful relationship between recognition accuracy and system parameters – one subject's data
 - Mixing multi-subjects' data may blur the relationship
- 7 activities: running, sitting, standing, walking, lying down, cycling and cleaning
 - 4-activity set: running, sitting, standing, walking
 - 6-activity set: 4-activity set + lying down and cycling
 - 7-activity set: 6-activity set + cleaning
- Transmission (TX) power level: 1~5 (maximum: 31)
- Packet sending rate: 1-4 pkts/s
- Each activity is performed for 30 minutes in diff. places (lab, classroom, living room, gym, kitchen, and outdoor)

N-fold Cross Validation

- Divide the datasets into N subsets
- N-1 subsets are used for training
- 1 subset is used for testing
- Repeat the above process for N times so that each of the N subsets is used exactly once for the testing data

TX Power Level

TX Power Level

Quantify PDR's discriminative capacity

Metric – Average Kullback–Leibler Divergence (KLD) over all activity pairs

KLD: small value = similar; large value = different

Q: What do you observe from this graph?

Packet Sending Rate & Smoothing Window Size

Accuracy increases with higher packet sending rate

Higher packet sending rate captures more information for RSSI variations (packet sending -> sensing the BSN channel)

Accuracy increases with larger smoothing

window size

TX Power Level = 2, Smooth Window= 9 seconds

Features extracted from larger smoothing window are more robust to noise

Any tradeoff you observe?

Optimize Packet Sending Rate & Smoothing Window Size

- Packet sending rate balances energy overhead and accuracy
- Smoothing window size balances latency and accuracy
- Rules for packet sending rate optimization:
 - At optimal TX power level, from 1 pkts/s, RadioSense selects i pkts/s if:
 - i achieves 90% accuracy OR
 - i>4, accuracy improvement of i+1<2%
- Rules for smoothing window size optimization:
 - At optimal TX power level and packet sending rate, RadioSense selects i seconds if:
 - i achieves 90% accuracy OR
 - i>10 seconds, accuracy improvement of i+1<2%

Amount of Training Data

- Average accuracy of three subject with different amount of training data
- 10-minute data is enough for stable accuracy

RadioSense Recap

 In training phase, we design RadioSense to bootstrap the system following the steps below:

Up to Now

- We have answered ...
 - How to endow the communication pattern with enough discriminative capacity for recognizing diff. activities?
- In the evaluation, we will answer...
 - What are the impacts of using communication pattern for AR on other system performance issues, such as energy and privacy?

Evaluation – Data Collection

• 3 subjects

Subject	Gender	Height (m)	Weigh (kg)
1	Male	1.80	85.0
2	Male	1.68	63.0
3	Female	1.56	48.0

- 7 activities running, sitting, standing, walking, lying, riding and cleaning
- Different places lab, classroom, living room, gym, kitchen, and outdoor
- During training phase
 - Each subject performs activities for system parameter optimization
 - With the optimal parameters, for each activity, each subject collects 10-minute data for training and 30-minute data for testing
- Lasts for two weeks
- One classifier for each subject

Evaluation – System Parameter Optimization

Average KLD Table

	Subject 1	Subject 2	Subject 3
TXPowerLevel 1	9.88	12.86	12.90
TXPowerLevel 2	13.18	20.79	8.80
TXPowerLevel 3	1.21	1.59	1.58

Subject 3 is smaller than the other two

Subject	Gender	Height (m)	Weigh (kg)
1	Male	1.80	85.0
2	Male	1.68	63.0
3	Female	1.56	48.0

Subject	TX Power Level	Packet Sending Rate	Smoothing Window Size
		(pkts/s)	(seconds)
1	2	4	8
2	2	3	6
3	1	4	6

Evaluation – Accuracy and Precision

Ave. KLD: 13.18, 20.79, 12.90

Ave. KLD is a validated metric

Accuracy = (TP+TN)/(TP+TN+FP+FN)

Precision = TP/(TP+FP)

Most single activity achieves 90% accuracy

Most single activity achieves 0.8 precision

Potentials – More Fine-Grained Activities

- One subject
- Sitting set driving, working, reading, eating, and watching TV
- Cleaning set cleaning table, cleaning floor, cleaning bathtub, and cleaning blackboard
- 10-minute data of each activity for training,
 30-minute data of each activity for testing
- Sitting 91.5%
- Cleaning 95.8%

Evaluation – Battery Lifetime and Privacy

- Battery lifetime for each subject's optimal system parameters
 - 3 Tmotes with new batteries (AA, Alkaline, LR6, 1.5V)
 - Run RadioSense until batteries die
 - 159.3 hours, 168.7 hours, 175.3 hours

Packet::NodeId

Privacy

Lower TX power and smaller communication range: around 1 m

	TX Power Level	TX Power (dBm)	Max Comm. Diameter (cm)
	1	-33.0	77.2
П	2	-28.7	108.3
	3	-25.0	388.0
	7 7	-15.0	923.2

Privacy risks are reduced!

Evaluation - Potential of Coexistence with Other On-body Sensor Nodes

- RadioSense two dedicated on-body sensor nodes, right wrist and ankle, with optimal parameters
- Two general purpose on-body sensor nodes, left wrist and ankle, TX power level 7, packet sending rate 4 pkts/s
- One subject, for each activity, 10-minute training data, 30-minute testing data
 RadioSense does not affect general
- For general purpose nodes:
 - PDR: 98.0%, 95.6%
 - In good condition [Sensys '08], since interference from RadioSense nodes is RadioSense leverages interference rather
 than suffers from it!

purpose nodes

- For RadioSense nodes:
 - Accuracy: 90.8% (with other nodes), 86.3% (without other nodes)
 - Communication contention with other on-body nodes may amplify the discriminative capacity of communication pattern

Limitations

- Strong background noises
 - Sensing-based approaches will also fail in such case because of high packet loss.
- Not scalable for new activities
 - It is a common problem for AR system using supervised learning method
- Current system is a little bit clunky
 - In future, the authors may replace the aggregator with smartphone;

Paper

Paper 4: Yatani, Koji, and Khai N. Truong.
 "Bodyscope: a wearable acoustic sensor for activity recognition." Proceedings of the 2012
 ACM Conference on Ubiquitous Computing.
 ACM, 2012.

User Activity Recognition

Q: Can we use a **single type** of sensor to detect a rich set of user's activity?

Main Idea

Sound produced in user's throat area -> User
 Activities (e.g., drinking, eating, laughing,
 speaking, etc.)

Share Your Thoughts

 Q1: How would you design a system to leverage user's sound to detect different activities (e.g., drinking, eating, speaking, laughing, coughing, sighing, etc.)?

• Q2: What are the equipment(s) you might need to implement your system?

BodyScope

Bluetooth headset

Uni-directional Microphone

Chestpiece of a stethoscope

BodyScope

12 Sound-related User Activities

State-of-the-arts

- GPS sensors: infer activities related to locations (e.g., working, shopping, driving, etc.)
- Accelerometers: recognize user's movement activities and serious Alone to Detect movement activities and Sensor Alone to Detect rupping Microphone Sensor Alone to Detect a Rich Set of User Activities!

 a Rich Set of User Activities

 a Rich Set of User Activities

 a Rich Set of User Activities

 context of a user and infer the activities
- RFID (Radio Frequency Identification): Embed RFID readers to smart gloves and install RFID tags to objects. Infer user activities from interactions (e.g., washing hands, preparing food or a drink, etc.)

User Activities Detected Through Sound Spectrogram

Deep Breath

Speaking

Whispering

Speaking (Speaking vs Whispering)

Whistling

Non-verbal Sounds (Laughing, Sighing, Coughing)

Classification Technique

- Features:
- Time-domain Feature
 - Zero-crossing Rate (ZCR): differentiate voiced and unvoiced sound
- Frequency-domain Feature
 - Total Spectrum Power
 - Brightness
 - Spectral Rolloff and Flux
- Classifier: SVM, Naïve Bayes, k-NN

```
    Activities to be classified (12 in total):

  Seated,
   Deep breath,
   Eating cookies, Eating bread,
   Drinking, Drinking with a sip;
  Speaking; Whispering;
  Whistling;
   Laughing, Sighing, Coughing
```

- Participants:
 - 10 participants (9 male, 1 female, all in 20s and 30s), all in good health
- Training and Testing Procedure
 - Leave-one-participant-out cross validation
 - Use the data from 9 participants for training and the data from the other participant for 1 test
 - Leave-one-sample-per-participant-out cross validation
 - Reserve one sample for one class from each participant as a test case and use the rest for training

	Leave-or	e-particip	ant-out	Leave-or	e-sample-per- nt-out		
	PR	RE	F	PR	RE	F	
Bayes	47.0%	45.7%	46.3%	72.3%	71.2%	72.2%	
5-NN	43.5%	43.2%	43.3%	75.3%	75.1%	75.2%	
SVM	50.2%	49.1%	49.6%	79.6%	79.4%	79.5%	

Training the modeling with user specific samples will be helpful!

Comparison of two validation approaches

 Q: What activities do you think that are more difficult to be distinguished from each other? Seated, Deep breath, Eating cookies, Eating bread, Drinking, Drinking with a sip; Speaking; Whispering; Whistling; Laughing, Sighing, Coughing

$\overline{}$							Predi	iction						
		Seated	Deep breath	Eating (Cookie)	Eating (Bread)	Drinking	Drinking (with a sip)	Speaking	Whispering	Whistling	Laughing	Sighing	Coughing	Recall [%]
	Seated	61	9	1	2	20	4	0	0	0	0	3	0	61.0
	Deep breath	2	1 5	9	7	7	2	0	16	4	15	21	2	15.0
	Eating (Cookie)	0	2	56	20	2	4	0	9	0	4	2	1	56.0
S	Eating (Bread)	2	4	27	51	5	2	0	0	1	3	1	4	51.0
Activities	Drinking	8	8	4	3	35	16	0	0	1	2	20	3	35.0
cti	Drinking (with a sip)	3	10	17	10	33	9	0	3	0	6	6	3	9.0
	Speaking	0	0	0	0	0	0	90	4	0	3	0	3	90.0
Actual	Whispering	0	11	5	0	2	1	20	53	2	3	0	3	53.0
A	Whistling	0	1	0	0	0	2	0	1	96	0	0	0	96.0
	Laughing	1	14	4	1	6	4	8	7	1	46	3	5	46.0
	Sighing	7	21	5	11	10	0	1	0	0	8	28	5	28.0
	Coughing	4	3	2	3	5	3	2	0	1	11	4	62	62.0
Pre	cision [%]	69.3	15.3	43.1	50.5	27.8	15.8	75.0	56.4	90.6	45.5	31.8	68.1	

The confusion matrix of the classification with leave-one-participant-out protocol (SVM)

$\overline{}$					Prediction									
		Seated	Deep breath	Eat	ting	Drir	nking	Speaking	Whispering	Whistling	Laughing	Sighing	Coughing	Recall [%]
	Seated	94	0	0	0	4	1	0	0	0	1	0	0	94.0
	Deep breath	0	79	0	2	3	2	0	5	0	4	2	3	79.0
	Eating (Cookie)	0	1	81	7	3	6	0	1	0	1	0	0	81.0
S	Eating (Bread)	0	1	8	80	4	5	0	0	0	0	1	1	80.0
)İİ	Drinking	0	5	3	1	78	5	0	1	0	2	5	0	78.0
Actual Activities	Drinking (with a sip)	2	2	10	5	14	60	0	2	0	1	2	2	60.0
al A	Speaking	0	0	0	0	0	0	97	0	0	2	0	1	97.0
ţ	Whispering	0	6	2	0	0	0	4	82	0	5	0	1	82.0
Ā	Whistling	0	1	0	0	0	0	0	1	98	0	0	0	98.0
	Laughing	0	7	3	0	5	4	4	6	0	64	2	5	64.0
	Sighing	2	10	0	4	6	1	0	1	0	6	66	4	66.0
	Coughing	4	4	1	1	1	2	0	1	0	4	8	74	74.0
Pre	cision [%]	92.2	68.1	75.0	80.0	66.1	69.8	92.4	82.0	100	71.1	76.7	81.3	

Decreasing the activity granularity would help improve accuracy as well.

The confusion matrix of the classification with leave-one-sample-per-participant-out protocol (SVM)

Small Scale In-the-Wild Evaluation

- Participants:
 - 5 participants (3 male, 2 female,)
- Focus on 4 activities
 - Eating, drinking, speaking and laughing
- Ground-truth:
 - Ask users to wear another phone with cameras around neck to record user's activities

Small-scale In-the-Wild Evaluation

eg						
		Eating	Drinking	Speaking	Laughing	Recall [%]
S.	Eating	157	11	11	0	87.8
Actual Activities	Drinking	19	33	7	9	56.0
ctiv	Speaking	16	10	498	7	93.8
` ∢	Laughing	1		25	14	35.0
Precisi	on [%]	81.3	61.1	92.1	66.7	

The confusion matrix of the **SVM** classification in our small-scale in-the-wild study

Small-scale In-the-Wild Evaluation

eg			Prediction							
		Eating	Drinking	Speaking	Laughing	Recall [%]				
Ş	Eating	125	49	4	1	69.8				
ual vitie	Drinking	17	36	6	0	61.0				
Actual Activities	Speaking	58	40	352	81	66.3				
Α	Laughing	1	1	16	22	55.0				
Precision	on [%]	62.2	28.6	93.1	21.2					

The confusion matrix of the **Naïve Bayes classification** in our small-scale in-the-wild study

A Demo Video

BodyScope on Youtube:

 https://www.youtube.com/watch?v=ns-Blh8p8IU

Limitation and Future Work

- Limited accuracy of the prototype
 - F-measure: 79.5% for lab experiment and 71.5% for in-the-wild study
- Users need to wear a special device that is very visible
 - Build a more comfortable and less intrusive device
- Only 12 activities are studied
 - Sense more activities (e.g., smoking, sneezing, etc.)
- Privacy issues have not been studied
 - Voice and sound contains a lot of sensitive and personal information

Thank You!

The End.