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Major Themes

) * Sets

— Ways of defining sets
— Subsets, complements, the universal set
— Venn diagrams
— Proofs of set equality via double inclusion
* Logic
— Propositions
— Truth tables
— Venn diagrams
— Quantifiers
— Proof techniques: direct, indirect, contradiction



Basic terminology

A set is an unordered collection of distinct objects called
elements or members of the set.

The cardinality of a finite set S is denoted |S]|.

The notation x €S — means “x is an element of S”

Example: S={2, 4,6, 8}, |S| =4
2ES — “2isanelementofS”
3&S — “3 isnotanelementofS”

A multiset or a bag is an unordered collection of objects that
are not necessarily distinct.
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Describing sets

Two ways to describe a set:
1. by listing elements, e.g., S={2, 4, 6, 8}

2. by a property, e.g.,
S ={x | xis an even positive integer}

 The set that has no elements is called the empty set, or
null set, and is denoted by &, or { }.

 Notethat |J| =0



Some important sets

N={1,2, 3,..} -thesetof natural numbers
/=A..,-2,-1,0,1, 2, ..} -the set of integers
W =10, 1, 2, 3, ...} - the set of positive integers
Z,=10, 1} - the binary digits

R - the set of real numbers

Q={x| x=p/gwherep,gEZ, g=0}-the set
of rational numbers
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Subsets

Sis a subset of T, denoted S C T, iff every element of S
is also an element of T.

Examples: {a,b} C {a,b,c}
{a,b, c} C {a,b,c}
SCS (for any S)
DCS (for any S)

Sis a proper subset of T, denoted SCT, iff S isa
subset of T but not vice versa.

Examples: {a,b}C {a,b,c} {b} C{a,b,c}
what about JCS ?7??
Note that SC T iff SCT A S=T
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The Power Set

The power set of a set S is the set of all subsets of S.
The power set of S is denoted by P(S).

P(D) = {D}

P({a}) = {9, {a}}

P({a,b}) = {<, {a}, {b}, {a,b}}

P({0, 1, 2}) = {Q, {0}, {1}, {2}, {0, 1}, {0, 2}, {1,2}, {0,1,2}}

Note that |P(S)] = 2/°!
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Set equality

Two sets S and T are equal, denoted S =T, iff
they have the same elements, i.e., for every x:

if x&SthenxeT
and if x&Tthenx&S

In other words:

S=T iff SCTand TCS

Proof technique: double inclusion
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Set equality

Examples:
* {a,b}=1{b,a}
e {1,2,3}={x| xisaninteger and 0< x < 4}

e {2,4,6}={x| x=2*y, wherey €1, 2, 3} }



The Universal Set

ats S and T are equal, denoted S =T, iff
Jve the same elements, i.e., for every x:
ifxESthenx&ET
if xETthenx &S

What does this even mean????
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The Universal Set U

We usually think of sets as subsets of a universal set U.
« Example: {a,b}and {b,d,e}=> U={ab,c,d,e}

(or maybe U ={3,b,c,d,e,f,g,...,z} - usually determined by context)

The complement of S, denoted S is the set of elements of U
that are not in S.

Example: {b,d,e} = {a,c}

The set difference, denoted S—T (or S\ T), is the set of
elements of S thatare NOT alsoin T.

Examples: {a,b,c,d,e}—{b,d,e}={a,c} (Note:S=U-=5)
{b,c}—{a,b} = {c}
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Venn diagrams

disjoint sets Sand T
S and T are not disjoint

U
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Set Union and Intersection

SUT ={x | x&S or x&T} SNT ={x | x&S and x&T}

U U

S UTis shaded S M Tis shaded
Example: Let S={1,2,3,4} and T={2,3,5}. Then
SUT = {1,2,3,4,5} SNT={2,3}
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Set difference and complement
S—T ={x| xES and x&T} S=U-S

U

Example: Let U=N
S={x | xis an integer greater than 6}
T={x | xis an even positive integer}

Then S-T={x| xisan odd integer greater than 6}
S={x | xis an integer less than or equal to 6}
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Generalized unions and intersections

S;MS,N...NS, denoted by Qsi

S,Us,U...US, denoted by LJSi

i=1

Example: Let S, ={i}.

mS:@ and USi={1,2,...,n}

I
i=1
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review

Sets and cardinality

LetA={a, b,c}, B={1, 2}
cardinality of a set = number of members

A
B

=3
=2

AUB={a,b,c,1,2} ANB=Y

Sum Principle: 1If A and B are disjoint

|AUB| = |A] + [B]



Sets and cardinality

lLetA=1{a,b,c d e}, B={b, d}

Al =5
Bl =2
A\ B={a, c, e}

Difference Principle: |f A C B,
|A\B| = |A] - |B]




review

Cartesian product

Let A={a, b,c}, B={1, 2}

The cartesian product is the set of ordered pairs
(x,y) where x € A and y € B:

AxB=1{(a, 1), (a, 2), (b, 1), (b, 2),(c, 1), (c, 2)}

Product Principle: |AxB| = |A| - |B]|




Ordered pairs and n-tuples

ordered pairs (a,,a,)

and

ordered n-tuples (a,,a,,...,a,)

* represent sequences where the order of elements
does matter and repetitions are allowed.

The Cartesian product of the sets S, S,, ..., S,, denoted by
S;xS,x..xS, , is the set of all ordered n-tuples (s,s,,...,s,) where
s, €S, s,ES5,, ...,5,£S,. Inotherwords,

S;%S,%..xS_ ={(54,5,,.--,5,) | s;€S;ands,&ES,and...ands €S}
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Set identities

SUJ =S ldentity | SU(TUR) = (SUT)UR Associative
SNU =S laws SN(TMR) = (SNT)NR laws
SUuU=U Domination | SN(TUR) = (SNT)U(SMR) Distributive
SN =J laws | SU(TNR) = (SUT)N(SUR) laws
SUS =S ldempotent | SUT=SNT De Morgan’ s
SMS =S laws SNT=SUT laws
SUT =TUS Commutative |ISUT| = |S| +|T]| - |SNT] Inclus.lon-
exclusion

ST =TNS laws

_ Complementation
(S)=S law
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Proving set identities - example

Provethat SN T=SUT (de Morgan’s Law for sets).
Proof: We proceed by showing that each set is a subset of
the other,i.e. SNTCSUTand SUTC SNOT

1. Suppose xESNT. ie x£SNT. Then xS or x&£T.
Hence, xS or x&T. This means that x €S U T.

Thus, SNTCSUT.

2. Now suppose x&=SUT.  Then xS or x&T.
Hence x£ S or x£T,  which means that x& SNT.

Therefore, x& SMT. Thus, SUTCSNT.
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Major Themes

* Sets

— Ways of defining sets

— Subsets, complements, the universal set

— Venn diagrams

— Proofs of set equality via double inclusion
) ° Logic

— Propositions

— Truth tables

— Venn diagrams

— Quantifiers



Why Logic?

Logic — a science of reasoning

. Basis of mathematical reasoning
- gives precise meaning to mathematical statements
- is used to distinguish between valid and invalid
mathematical arguments

. Applications in CS:
- design of hardware
- programming
- artificial intelligence
- databases
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Proposition

A declarative statement that is either true or false

Are the following propositions?

e 1+2 =13

e today is my birthday

e New York is the capital of the USA
e5-3+2

® Xx+y > 5

e Are you a student?

e Don’ t talk

e Your feet are ugly

e This sentence is false



Compound Propositions and Connectives

Compound propositions are formed from simpler
propositions using connectives, also called logical operators.

The connectives we will study are:

e negation  or not operator denoted -
e conjunction or and operator A
e disjunction or or operator Y

e exclusive or or xor operator @
e implication —>

e biconditional <~

Villanova CSC 1300 - Dr Papalaskari



Negation

If p is a proposition, then the statement
“It is not the case thatp”
is another proposition, called the negation of p.
The negation of p, denoted by —p and read “notp”,
is true when p is false, and is false when p is true.

Example: What is the negation of “Today is Wednesday’ ?

The truth table for negation:
p | —-p

T
F
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Conjunction

The proposition “p and g, denoted by p » g, is called the
conjunction of p and q.
It is true when both p and g are true, otherwise it is false.

Examples: Today is Wednesday and it is raining.
Today is Wednesday but it is not raining.

The truth table for conjunction:
P q | pAg

n o+ A
m—~H o
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Disjunction
The proposition “p or g”, denoted by p v g, is called the

disjunction of p and q.
It is false when both p and g are false, otherwise it is true.

Example: Today is Sunday or a holiday.

The truth table for disjunction:

P g |pvg

nalie s I
m -4 o
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Exclusive OR (XOR)

The proposition p @ q is called the exclusive or of p and q.
It is true when exactly one of p and g is true, otherwise it is

false.

Example: This dish comes with soup or salad.

The truth table for exclusive or:

p q | p®gq

aalie s I
m =4 o

Villanova CSC 1300 - Dr Papalaskari



Implication

The implication or conditional proposition p — q is the
proposition that is false only when p is true and q is false.

p is called the hypothesis and g is called the conclusion.

The truth table for implication:

P g |p—q
T T
T F
F T
F F
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Readings forp —q:

“if p then q”
“ponlyifqg”

‘g is necessary for p”
“p is sufficient for q”
“pimplies g~

‘q ifp”

‘g whenever p”

(] (] (] ( [ ] (] (]
-~ L) L)



Examples of Implication Wording

If John is in L.A., then he is in California.

To

To

pe in California, it Is sufficient for John to be in L.A.

be in LA, it Is necessary for John to be in California.

You will get an A if you study hard.

VS.

You will get an A only if you study hard.
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More Examples of Implication wording:

If you place your order by 11:59pm December 215, then
we guarantee delivery by Christmas.

Placing your order by 11:59pm December 215t
guarantees delivery by Christmas.

We guarantee delivery by Christmas
if you place your order by 11:59pm December 21st.
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More Examples of Implication wording:

If you place your order by 11:59pm December 215, then
we guarantee delivery by Christmas.

Placing your order by 11:59pm December 215t
guarantees delivery by Christmas.

We guarantee delivery by Christmas
if you place your order by 11:59pm December 21st.

is this the same too?
We guarantee delivery by Christmas

only if you place your order by 11:59pm December 21st.
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Biconditional

The biconditional p <= g is the proposition that is true when
p and g have the same truth values, and is false otherwise.

The truth table for biconditional: = Readings for p <= q:

p <q e “pifandonlyifqg”
e “pis necessary and
sufficient for g”

e “if p, then g, and
conversely”

L)
Q

o
m = o
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Truth tables for more complex propositions

p qr rv (g A - p)

TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
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Tautology

- A (compound) proposition that is always true
(irrespective of the values of its components)

p gr (- pAa(pv q))—q

TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF



Logical Equivalence

We say that two propositions are logically equivalent iff
they have the same truth table.

P 9 “pPVvq P—(¢

TT
TF
FT
FF

* wewrite: "pVQg=pPp—(qQ
to indicate that the propositions —=p v q and p—q are logically equivalent
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De Morgan’ s Laws for Logic

First De Morgan’ s law for logic:
=(pvag) =(-p)r(-q)

Example: Today is Sunday or a holiday.

Second De Morgan’ s law for logic:
= (pAq)=

Example: Today is Sunday and a holiday.
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Converse, Inverse and Contrapositive

e g — p is called the converse of p — g
e -p — —qis called the inverse of p — ¢
e -g — =pis called the contrapositive of p — g

p q | p—>q| g—=p |-p—>-q |~g—=>-p

aalie s I
m =4 o

Which of the above are logically equivalent?
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Bit operations
Bit (binary digit)- either O or 1.

T is usually represented as 1, and Fas O

OvO0=0 (becauseFv F=F)
Ovl=1 (becauseFvT=T)

These operations can also be applied to bit strings (sequences of
bits):

001 v 010=011 (becauseOv0=0, 0Ovli=1and1lv0=1)
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Propositional functions

Interesting statements involve variables.

Definition A propositional function P(x) is a
function whose values are propositions, i.e., it’ s an
assignment to each element x of the function’ s
domain D called the domain of discourse a
proposition (a true or false statement).

Example

Let P(x) denote the statement “x is even’.
Domain of discourse?
P(2)
P(3)
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Universal quantifier

Definition: universal quantification of P(x)

“P(x) is true for all values of x in its universe of discourse”

“for all x P(x)”

“for every x P(x) ”

Vx P(x)

universal quantifier
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Examples of universal quantification
Vx (x+0 = x)

Vx (x> x)

Vx P(x) where P(x) denotes the statement “x didn’ t do the
homework”

“everyone is mortal”:
Let M(x) denote “xis mortal” and H(x) denote “xis a
human”
Vx M(x), if the universe of discourse is the set of all humans
or
Vx [H(x)— M(x)], if the universe of discourse is the set of

all things and creatures.



Existential quantifier

Definition: existential quantification of P(x)
“there exists an element x in its universe of discourse
such that P(x) is true”

“there is an x such that P(x)”
“for some x P(x)”

dx P(x)
Rexistential quantifier.
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Examples of existential quantification

True or false?
Ax (x+x=x*x)

Ix (x=x+1)

dx P(x) where P(x) denotes the statement “x did the
practice problems”?
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Generalized De Morgan Laws of Logic

e = VxP(x) = Ax =P(x)
“Not every student did the practice problems”

“There is a student who did not do the practice problems”

e —3JxP(x) = Vx=P(x)
“There is no white elephant”

“Every elephant is not white”
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Expressions with several quantifiers

Let the universe of discourse be the set of all students
(of VU).

Let
C(x) means “x has a computer”

F(x,y) means “x and y are friends”

Translate the following into English:
e VxC(x)

o Vx[C(x) v dy(F(x,y) A C(y))]
e dx —dy F(x,y)
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Does the order of the quantifiers matter?

— No, if we have several consecutive quantifiers of the
same type:

VxVyQ(x,y) = VyVxQ(x,y) IxAyQ(x,y) = yAxQ(x,y)

— Yes, if we have different quantifiers:

Vx3dyQ(x,y) EXVXQ(X,V)

Counterexample: Let Q(x,y) mean “x+y=0", and let the
universe of discourse be the set of all real numbers. What is

the truth value of:
Vx3dyQ(x,y) ?
HyVXQ(X,Y) ? Villanova CSC 1300 - Dr Papalaskari



Proofs in Computer Science

m Establishing correctness and efficiency of algorithms
m Verification of program correctness
m Establishing that an operating system is secure

m Establishing that certain goals cannot be achieved
(such as finding a universal program-correctness
checker)

m Making inferences in Al



Mathematical System

Logic is a tool
for the analysis
of inference

proved to be true

assumed to be true ‘

used to create terms
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Basic Terminology

« Axiom (postulate) — underlying assumption, does not require a proof
* Rules of inference — used to draw conclusions from other assertions

* Proof of a statement A — a sequence of statements, each of which is:
*an axiom or
follows from one or more earlier statements
and the last statement in the sequence is A

 Informal proof vs. formal — uses rules of inference informally and
formally, respectively

« Theorem - a statement that has been proved
« Lemma - atheorem used in the proof of other theorems

» Corollary — a theorem that immediately follows from another theorem
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Conjecture

... a likely-to-be-true statement that has
not yet been proved

- Fermat’s Last Theorem (17th century)

Equation x"+ y" = z" has no non-zero integer solutions for n > 2.
— a conjecture for over 300 years - proved by Andrew Wiles (Princeton, 1994)

« Goldbach’s Conjecture (18th century)
Every even integer greater than 4 is the sum of two primes.
— still neither proved nor disproved

P # NP Conjecture (1970s)

There are problems that cannot be solved by any polynomial-time algorithm (i.e., running time
grows slower than exponentially with input size), but whose guessed solutions can be verified
by a such an algorithm.

— still neither proved nor disproved

» 3x + 1 Conjecture (1950s)
If we repeatedly apply the transformation that sends an even integer x to x/2 and an odd
integer to x >3x + 1 we will eventually reach 1. (eg: 132402>20>10>52>16>8>4->2->1

— still neither proved nor disproved
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Types of proofs

m direct
m indirect (by contrapositive)

m by contradiction
m proof of equivalence

m proof by cases
m proof by mathematical induction
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Proving p —=¢q

* Direct Proof
P—q
* Indirect Proof / Contrapositive

p—=>q="4qg—=>"p
* Proof by Contradiction

p—=qg=p@PA—q)—=>@A"F)



Direct Proof

Toprove p — (:

Suppose p is true; prove that g must also be true

Example:

If n is even, then n? is also even
Proof:

Suppose n is even. Thus n = 2k for some k. Thus
n2 = (2k)(2k) = 2(2k2), which is also even.
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Indirect Proof

Prove p — { by proving contrapositive: = ¢ — = p
Problem:

If n-m is odd, then an nxm grid cannot be tiled with dominoes.
Proof:

Proceed by proving that if an nxm grid can be tiled
with dominoes, then n-m is even. Suppose an nxm
grid can be tiled with dominoes. There are a total of
n-m squares, so if each domino covers 2 tiles and
there is no overlap and the dominoes cover all the

squares, then the tiling will use nm/2 squares, which
means n-m is even.




Contradiction Proof

Prove s by showing that — s is absurd!

e =§—F

(Reductio ad absurdum)

To prove implication: p — ¢ show that:

pAN=q)—>(rAn=r)

Villanova CSC 1300 - Dr Papalaskari



Proofs of equivalence

A proof of equivalence of two assertions (1.€., p <= q),
often stated by using “if and only if” or “necessary and
sufficient,” requires two separate parts:

p—qgand g — p.

«Example: An integer 7 is odd iff n” is odd.
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Proofs, examples, and counterexamples: Vx P(x)

For universal statements:

* Checking validity of a theorem for specific examples
does NOT constitute a proof (unless the examples
exhaust all the values in the theorem’ s domain, which
IS impossible if the latter is infinite).

e Just a single example suffices to disprove a theorem.
(Such an example is usually called a counterexample).




Proofs, examples, and counterexamples dx P(x)

For existential statements:

* A single example suffices to prove the theorem
(constructive proof).

» Alternative, it is possible to show, using
contradiction, that it is not possible for such a thing

not to exist.

e Show that a player in a game has a winning strategy without actually
saying what it is!
e Famous proof: There exist irrational X, y such that x¥ is rational
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