
03 - Object-Oriented Thinking Part 1
CS202: Introduction to Object Oriented Programming

Victor Mejia
CSULA

Slides adapted from Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

❑ To apply class abstraction to develop software (§10.2).
❑ To explore the differences between the procedural

paradigm and object-oriented paradigm (§10.3).
❑ To discover the relationships between classes (§10.4).
❑ To design programs using the object-oriented paradigm

(§§10.5–10.6).

Objectives

Today’s Topics

■ Quick Recap: The this Keyword
■ Quick Recap: Static Methods and Variables
■ Passing Objects to Methods
■ Class Abstraction and Encapsulation
■ Thinking in Objects
■ Class Relationships

○ Association: Aggregation and Composition
■ Case Study: Designing the Course Class
■ Case Study: Designing a Class for Stacks

Quick Recap: the this keyword

The this Keyword

■ The this keyword is the name of a reference that
refers to an object itself. One common use of the
this keyword is reference a class’s hidden data
fields.

■ Another common use of the this keyword to enable
a constructor to invoke another constructor of the
same class.

The this Keyword

Calling Overloaded Constructor

Quick Recap: Static Variables and
Methods

Instance Variables, and Methods

Instance variables belong to a specific
instance.

Instance methods are invoked by an instance
of the class.

Static Variables, Constants, and Methods

Static variables are shared by all the instances of
the class.

Static methods are not tied to a specific object.

Static constants (use final) are final variables
shared by all the instances of the class.

Static Variables, Constants, and Methods

To declare static variables, constants, and
methods, use the static modifier.

Static Variables, Constants, and Methods

Passing Objects to Methods

Passing Objects to Methods

● Passing by value for primitive type value
(the value is passed to the parameter)

● Passing by value for reference type value
(the value is the reference to the object)

Passing Objects to Methods

■ Java is always pass by value

■ in methods, the objects are passed a
copy of the object reference

Example: Passing Objects

■ Circle.java
■ TestPassingObjects.java

Array of Objects

Array of Objects

 Circle[] circleArray = new Circle[10];

■ An array of objects is actually an array of
reference variables.

■ So invoking circleArray[1].getArea()
involves two levels of referencing as shown
in the next figure.

■ circleArray references to the entire array.
circleArray[1] references to a Circle object.

Array of Objects, cont.

 Circle[] circleArray = new Circle[10];

■ You see the advantages of object-oriented
programming from the preceding lecture.

■ This week we will learn how to solve
problems using the object-oriented
paradigm.

Introduction

Class Abstraction and Encapsulation

Class abstraction means to separate class
implementation from the use of the class. The
creator of the class provides a description of
the class and let the user know how the class
can be used. The user of the class does not
need to know how the class is implemented.
The detail of implementation is encapsulated
and hidden from the user.

Class Abstraction and Encapsulation

Thinking in Objects

The BMI Class

Procedural to Object-Oriented

■ ComputeAndInterpretBMI.java
■ BMI.java
■ UseBMIClass.java

Class Relationships

Association

Association

Aggregation Composition

Association

■ A general binary description that describes an activity
between two classes

■ Student taking a course
○ association between Student and Course class

■ Faculty teaching a course
○ association between Faculty and Course class

Association

a solid line

Relationship

may include a small triangle indication direction of
relationship

Multiplicity

● * (any number)
● m...n (range, like 2...10)
● n (number, like 5)

Association

● a student may take any number of courses
● a faculty member may teach at most three courses
● a course may have from five to sixty students
● a course is taught by only one faculty member.

Association

■ Aggregation models has-a relationships and
represents an ownership relationship
between two objects.

■ The owner object is called an aggregating
object and its class an aggregating class.

■ The subject object is called an aggregated
object and its class an aggregated class.

Aggregation and Composition

Composition

■ If an object is exclusively owned by an
aggregating object, the relationship between the
object and its aggregating object is referred to as a
composition
○ “student has a name” is composition
○ “student has an address” is an aggregation,

since an address can be shared by many
students

An aggregation relationship is usually
represented as a data field in the aggregating
class.

Class Representation

Since aggregation and composition
relationships are represented using
classes in similar ways, many texts don’t
differentiate them and call both
compositions.

Aggregation or Composition?

Aggregation may exist between objects of the
same class. For example, a person may have
a supervisor.

public class Person {

 // The type for the data is the class itself

 private Person supervisor;

 ...

}

Aggregation Between Same Class

What happens if a person has several
supervisors?

Aggregation Between Same Class

public class Person {
 ...

 private Person[] supervisors;

}

Case Study: Designing the Course Class

Example: The Course Class

Code: The Course Class

■ Course.java
■ TestCourse.java

Case Study: Designing a class for Stacks

Example: The StackOfIntegers Class

Designing the StackOfIntegers Class

Implementing the StackOfIntegers Class

Code: Stack of Integers

■ StackOfIntegers.java
■ TestStackOfIntegers.java

