
Lecture 06 - Inheritance

Slides adapted from Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

CS202: Introduction to Object Oriented Programming
Victor Mejia

CSULA

Today’s Topics:

● Introduction - Inheritance
● Superclasses and Subclasses
● Using the super Keyword
● Overriding Methods
● The Object Class
● Polymorphism and Dynamic Binding
● Casting objects and the instanceof

Introduction

4

Motivations

Suppose you work for a company at which
managers are treated differently from other
employees:
● both employees are managers are paid a

salary
● managers get bonuses
● a manager is also an employee

How would we model this?

Inheritance

Inheritance enables you to
● define a general class (i.e., a superclass)
● later extend it to more specialized classes (i.e.,

subclasses).
● Inheritance models the “is-a” relationship
● Every manager “is an” employee.

Inheritance - UML Diagram

Employee

Manager Secretary Programmer

Executive

Inheritance

public class Manager extends Employee {

added methods and fields

}

● extends: you are making a new class that
derives from an existing class

● existing class: superclass, base class, parent
class

● derived class: subclass, derived class, child
class

subclass superclass

Inheritance

public class Manager extends Employee {

added methods and fields

}

● The Employee class is a superclass, but not
because it is superior to its subclass or contains
more functionality.

● The opposite is true: subclasses have more
functionality than their superclasses.

subclass superclass

Superclasses and Subclasses

public class Manager extends Employee {

added methods and fields

}

● The keyword extends tells the compiler that the Manager
class extends the Employee class, thus inheriting the
methods getName, getHireDay.

● even though these methods are not explicitly
defined in the Manager class, they are
automatically inherited (so are the fields).

subclass superclass

Defining a Subclass

A subclass inherits from a superclass. You can also:
● Add new properties

● Add new methods

● Override the methods of the superclass

Inheritance Example

Employee.java
Manager.java

Using the super Keyword

13

● To call a superclass constructor
● To call a superclass method

The keyword super refers to the superclass
of the class in which super appears. This
keyword can be used in two ways:

Using the Keyword super

14

public double getSalary() {

return this.salary + this.bonus; // won’t work

}

The Manager’s getSalary() method should
add the bonus.

Using the Keyword super

won’t work because the Manager subclass
has no direct access to the private fields of
the superclass.

15

public double getSalary() {

return getSalary() + this.bonus; // won’t work

}

The Manager’s getSalary() method should
add the bonus.

Using the Keyword super

won’t work because getSalary() would be
calling itself, resulting in a stack overflow

16

public double getSalary() {

return super.getSalary() + this.bonus;

}

The Manager’s getSalary() method should
add the bonus.

Using the Keyword super

works, calling the method on the superclass

17

super.salary = x;

The keyword super is not a reference to an
object. For example you cannot do this:

Using the Keyword super

It is a special keyword that direct the
compiler to invoke the superclass method.

18

Are constructors of the superclass inherited?

No. They are not inherited.

They are invoked explicitly or implicitly.
Explicitly using the super keyword.

A constructor is used to construct an instance of a
class. Unlike properties and methods, a superclass's
constructors are not inherited in the subclass. They
can only be invoked from the subclasses' constructors,
using the keyword super. If the keyword super is not
explicitly used, the superclass's no-arg constructor is
automatically invoked.

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or
its superclass’s constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement
in the constructor. For example,

CAUTION

You must use the keyword super to call the
superclass constructor. Invoking a
superclass constructor’s name in a
subclass causes a syntax error. Java
requires that the statement that uses the
keyword super appear first in the
constructor.

21

Constructor Chaining

public class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");

 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

public class Employee {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is known as constructor chaining.

Example on the Impact of a Superclass without no-arg
Constructor

public class Apple extends Fruit {

}

class Fruit {

 public Fruit(String name) {

 System.out.println("Fruit's constructor is invoked");

 }

}

Find out the errors in the program:

Example on the Impact of a Superclass without no-arg
Constructor

public class Apple extends Fruit {

}

class Fruit {

 public Fruit(String name) {

 System.out.println("Fruit's constructor is invoked");

 }

}

Find out the errors in the program:

Defining a Subclass

A subclass inherits from a superclass. You can also:
● Add new properties

● Add new methods

● Override the methods of the superclass

Overriding Methods

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a
method defined in the superclass. This is referred to as method
overriding.
public class Circle extends GeometricObject {

 // Other methods are omitted

 /** Override the toString method defined in GeometricObject */
 public String toString() {
 return super.toString() + "\nradius is " + radius;
 }

}

● An instance method can be overridden
only if it is accessible.

● Thus a private method cannot be
overridden, because it is not accessible
outside its own class.

● If a method defined in a subclass is
private in its superclass, the two methods
are completely unrelated.

NOTE

NOTE

● Like an instance method, a static method
can be inherited.

● However, a static method cannot be
overridden.

● If a static method defined in the
superclass is redefined in a subclass, the
method defined in the superclass is
hidden.

Overriding vs. Overloading

Polymorphism

Polymorphism

Simple rule for inheritance:
● The “is-a” rule states that every object of the

subclass is an object of the superclass
● Every manager is an employee
● Manager is a subclass of the Employee class (the

opposite is not true)
● substitution principle: you can use a subclass

object whenever the program expects a
superclass object

Polymorphism

Employee e;
e = new Employee(...); // Employee object expected
e = new Manager(...); // OK, Manager can be used
as well

polymorphism: an object variable can refer to
multiple actual types

The Object Class and Its Methods

Every class in Java is descended from the
java.lang.Object class. If no inheritance is
specified when a class is defined, the
superclass of the class is Object.

The toString() method in Object
The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and a number representing this object.

Loan loan = new Loan();

System.out.println(loan.toString());

The code displays something like Loan@15037e5 . This
message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

