
Lecture 07a - Polymorphism

Slides adapted from Savitch, Absolute Java,, Fifth Edition, Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

CS202: Introduction to Object Oriented Programming
Victor Mejia

CSULA

Today’s Topics:

• Quick Recap - Inheritance

• Polymorphism

• Dynamic Binding

• The Object class

• ArrayList

Quick Recap - Inheritance

• Inheritance is one of the main techniques of object-
oriented programming (OOP)

• Using this technique, a very general form of a class is
first defined and compiled, and then more
specialized versions of the class are defined by
adding instance variables and methods
– The specialized classes are said to inherit the methods and

instance variables of the general class

Quick Recap - Inheritance

• Inheritance is the process by which a new class is created
from another class
– The new class is called a derived class
– The original class is called the base class

• A derived class automatically has all the instance variables
and methods that the base class has, and it can have
additional methods and/or instance variables as well

• Inheritance is especially advantageous because it allows code
to be reused, without having to copy it into the definitions of
the derived classes

Derived Classes

• Within Java, a class called Employee can be
defined that includes all employees

• This class can then be used to define classes for
hourly employees and salaried employees
– In turn, the HourlyEmployee class can be used to

define a PartTimeHourlyEmployee class, and
so forth

Overriding a Method Definition

• Although a derived class inherits methods
from the base class, it can change or override
an inherited method if necessary
– In order to override a method definition, a new

definition of the method is simply placed in the
class definition, just like any other method that is
added to the derived class

Changing the Return Type of an Overridden
Method

• Ordinarily, the type returned may not be changed
when overriding a method

• However, if it is a class type, then the returned type
may be changed to that of any descendent class of
the returned type

• This is known as a covariant return type
– Covariant return types are new in Java 5.0; they are not

allowed in earlier versions of Java

Covariant Return Type

• Given the following base class:
public class BaseClass
{ . . .
 public Employee getSomeone(int someKey)
 . . .

• The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass
{ . . .
 public HourlyEmployee getSomeone(int someKey)
 . . .

Changing the Access Permission of an
Overridden Method

• The access permission of an overridden method can
be changed from private in the base class to public
(or some other more permissive access) in the
derived class

• However, the access permission of an overridden
method can not be changed from public in the base
class to a more restricted access permission in the
derived class

Changing the Access Permission of an
Overridden Method

• Given the following method header in a base case:
private void doSomething()

• The following method header is valid in a derived class:
public void doSomething()

• However, the opposite is not valid
• Given the following method header in a base case:

public void doSomething()

• The following method header is not valid in a derived class:
private void doSomething()

The this Constructor

• Within the definition of a constructor for a class,
this can be used as a name for invoking another
constructor in the same class
– The same restrictions on how to use a call to super apply

to the this constructor

• If it is necessary to include a call to both super and
this, the call using this must be made first, and
then the constructor that is called must call super
as its first action

The this Constructor

• Often, a no-argument constructor uses this to invoke an
explicit-value constructor
– No-argument constructor (invokes explicit-value constructor using
this and default arguments):
public ClassName()
{
 this(argument1, argument2);
}

– Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)
{
 . . .
}

The this Constructor

public HourlyEmployee()
{
 this("No name", new Date(), 0, 0);
}

• The above constructor will cause the constructor
with the following heading to be invoked:
public HourlyEmployee(String theName,
Date theDate, double theWageRate,
double theHours)

Tip: An Object of a Derived Class Has More than
One Type

• An object of a derived class has the type of the
derived class, and it also has the type of the base
class

• More generally, an object of a derived class has the
type of every one of its ancestor classes
– Therefore, an object of a derived class can be assigned to a

variable of any ancestor type

Tip: An Object of a Derived Class Has More than
One Type

• An object of a derived class can be plugged in as a
parameter in place of any of its ancestor classes

• In fact, a derived class object can be used anyplace
that an object of any of its ancestor types can be
used

• Note, however, that this relationship does not go the
other way
– An ancestor type can never be used in place of one of its

derived types

Protected and Package
Access

• If a method or instance variable is modified by protected
(rather than public or private), then it can be accessed
by name
– Inside its own class definition
– Inside any class derived from it
– In the definition of any class in the same package

• The protected modifier provides very weak protection
compared to the private modifier
– It allows direct access to any programmer who defines a suitable

derived class
– Therefore, instance variables should normally not be marked
protected

Protected and Package
Access

• An instance variable or method definition that is not
preceded with a modifier has package access
– Package access is also known as default or friendly access

• Instance variables or methods having package access
can be accessed by name inside the definition of any
class in the same package
– However, neither can be accessed outside the package

Protected and Package
Access

• Note that package access is more restricted
than protected
– Package access gives more control to the

programmer defining the classes

– Whoever controls the package directory (or
folder) controls the package access

Access Modifiers

Tip: Static Variables Are Inherited

• Static variables in a base class are inherited by
any of its derived classes

• The modifiers public, private, and
protected, and package access have the
same meaning for static variables as they do
for instance variables

Access to a Redefined Base Method

• Within the definition of a method of a derived class, the base
class version of an overridden method of the base class can
still be invoked
– Simply preface the method name with super and a dot
public String toString()
{
 return (super.toString() + "$" + wageRate);
}

• However, using an object of the derived class outside of its
class definition, there is no way to invoke the base class
version of an overridden method

You Cannot Use Multiple supers

• It is only valid to use super to invoke a method from a direct
parent
– Repeating super will not invoke a method from some other ancestor

class

• For example, if the Employee class were derived from the
class Person, and the HourlyEmployee class were
derived form the class Employee , it would not be possible
to invoke the toString method of the Person class within
a method of the HourlyEmployee class
super.super.toString() // ILLEGAL!

The Object Class

The Class Object

• In Java, every class is a descendent of the class
Object
– Every class has Object as its ancestor

– Every object of every class is of type Object, as well as
being of the type of its own class

• If a class is defined that is not explicitly a derived
class of another class, it is still automatically a
derived class of the class Object

The Class Object

• The class Object is in the package java.lang
which is always imported automatically

• Having an Object class enables methods to be
written with a parameter of type Object
– A parameter of type Object can be replaced by an object

of any class whatsoever
– For example, some library methods accept an argument of

type Object so they can be used with an argument that
is an object of any class

The Class Object

• The class Object has some methods that every Java class
inherits
– For example, the equals and toString methods

• Every object inherits these methods from some ancestor class
– Either the class Object itself, or a class that itself inherited these

methods (ultimately) from the class Object

• However, these inherited methods should be overridden with
definitions more appropriate to a given class
– Some Java library classes assume that every class has its own version

of such methods

The Right Way to Define equals

• Since the equals method is always inherited from
the class Object, methods like the following simply
overload it:
public boolean equals(Employee otherEmployee)
{ . . . }

• However, this method should be overridden, not just
overloaded:
public boolean equals(Object otherObject)
{ . . . }

The Right Way to Define equals

• The overridden version of equals must meet the
following conditions
– The parameter otherObject of type Object must be

type cast to the given class (e.g., Employee)
– However, the new method should only do this if
otherObject really is an object of that class, and if
otherObject is not equal to null

– Finally, it should compare each of the instance variables of
both objects

A Better equals Method for the Class
Employee

public boolean equals(Object otherObject)
{
 if(otherObject == null)
 return false;
 else if(getClass() != otherObject.getClass())
 return false;
 else
 {
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name) &&
 hireDate.equals(otherEmployee.hireDate));
 }
}

Tip: getClass Versus instanceof

• Many authors suggest using the instanceof operator in
the definition of equals
– Instead of the getClass() method

• The instanceof operator will return true if the object
being tested is a member of the class for which it is being
tested
– However, it will return true if it is a descendent of that class as well

• It is possible (and especially disturbing), for the equals
method to behave inconsistently given this scenario

Tip: getClass Versus instanceof

• Here is an example using the class Employee
. . . //excerpt from bad equals method
else if(!(OtherObject instanceof Employee))
 return false; . . .

• Now consider the following:
Employee e = new Employee("Joe", new Date());
HourlyEmployee h = new
 HourlyEmployee("Joe", new Date(),8.5, 40);
boolean testH = e.equals(h);
boolean testE = h.equals(e);

Tip: getClass Versus instanceof

• testH will be true, because h is an Employee
with the same name and hire date as e

• However, testE will be false, because e is not an
HourlyEmployee, and cannot be compared to h

• Note that this problem would not occur if the
getClass() method were used instead, as in the
previous equals method example

instanceof and getClass

• Both the instanceof operator and the
getClass() method can be used to check the
class of an object

• However, the getClass() method is more exact
– The instanceof operator simply tests the class of an

object
– The getClass() method used in a test with == or !=

tests if two objects were created with the same class

The instanceof Operator

• The instanceof operator checks if an
object is of the type given as its second
argument
Object instanceof ClassName
– This will return true if Object is of type
ClassName, and otherwise return false

– Note that this means it will return true if
Object is the type of any descendent class of
ClassName

The getClass() Method

• Every object inherits the same getClass()
method from the Object class
– This method is marked final, so it cannot be overridden

• An invocation of getClass() on an object returns
a representation only of the class that was used with
new to create the object
– The results of any two such invocations can be compared

with == or != to determine whether or not they represent
the exact same class

(object1.getClass() == object2.getClass())

A First Look at the clone Method

• Every object inherits a method named clone from
the class Object
– The method clone has no parameters

– It is supposed to return a deep copy of the calling object

• However, the inherited version of the method was
not designed to be used as is
– Instead, each class is expected to override it with a more

appropriate version

A First Look at the clone Method

• The heading for the clone method defined in the Object
class is as follows:
protected Object clone()

• The heading for a clone method that overrides the clone
method in the Object class can differ somewhat from the
heading above
– A change to a more permissive access, such as from protected to

public, is always allowed when overriding a method definition
– Changing the return type from Object to the type of the class being

cloned is allowed because every class is a descendent class of the class
Object

– This is an example of a covariant return type

A First Look at the clone Method

• If a class has a copy constructor, the clone method for
that class can use the copy constructor to create the
copy returned by the clone method

public Sale clone()
{
 return new Sale(this);
}
 and another example:

public DiscountSale clone()
{
 return new DiscountSale(this);
}

Copy Constructor
 public Sale(String theName, double thePrice)
 {
 setName(theName);
 setPrice(thePrice);
 }

 public Sale(Sale originalObject)
 {
 if (originalObject == null)
 {
 System.out.println("Error: null Sale object.");
 System.exit(0);
 }
 //else
 name = originalObject.name;
 price = originalObject.price;
 }

The hashCode Method
• a hash code is an integer that is derived from an

object
• hash codes should be scrambled

• if x and y are two distinct objects, there should
be a high probability that x.hashCode() and y.
hashCode() are different

• The String class uses the following algorithm to
compute the hash code:

int hash = 0;
for (int i = 0; i < length(); i++)

has = 31 * hash + charAt(i)

The hashCode Method

s 2301506

sb 1735600054

t 2301506

tb 21685669

The hashCode Method

● s and t have the same hash code: for strings the hash
codes are derived from their contents

● string builders sb and tb have different hash codes
because no hashCode method has been defined for the
StringBuilder class
○ default hashCode in the Object class derives the hash

code from the object’s memory address

The hashCode Method
● If you redefine the equals method, redefine the

hashCode method for objects that users might insert
into a hash table
○ data structure covered in CS203

● It should return an integer (can be negative)
● Just combine the hash codes of the instance fields

 public int hashCode() {
 return 7 * name.hashCode()
 + 13 * new Double(price).hashCode();
 }

The hashCode Method
● equals and hashCode must be compatible

○ if you define Sale.equals to compare name and
price, hashCode needs to hash name and price
also, not just name

● tip: if you have fields of array type, you can use the
static Arrays.hashCode method to compute a hash
code that is composed of the hash codes of the array
elements

● an ArrayList object has a hashCode() method

Introduction to Polymorphism

• There are three main programming mechanisms that
constitute object-oriented programming (OOP)
– Encapsulation
– Inheritance
– Polymorphism

• Polymorphism is the ability to associate many
meanings to one method name
– It does this through a special mechanism known as late

binding or dynamic binding

Introduction to Polymorphism

• Inheritance allows a base class to be defined, and
other classes derived from it
– Code for the base class can then be used for its own

objects, as well as objects of any derived classes

• Polymorphism refers to a programming language's
ability to process objects differently depending on
their data type or class. More specifically, it is the
ability to redefine methods for derived classes.

Dynamic Binding

• The process of associating a method definition with a
method invocation is called binding

• If the method definition is associated with its
invocation when the code is compiled, that is called
early binding

• If the method definition is associated with its
invocation when the method is invoked (at run time),
that is called late binding or dynamic binding

Dynamic Binding

• Java uses dynamic binding for all methods (except
private, final, and static methods)

• Because of dynamic binding, a method can be
written in a base class to perform a task, even if
portions of that task aren't yet defined

• For an example, the relationship between a base
class called Sale and its derived class
DiscountSale will be examined

The Sale and DiscountSale Classes

• The Sale class contains two instance variables
– name: the name of an item (String)
– price: the price of an item (double)

• It contains three constructors
– A no-argument constructor that sets name to "No name
yet", and price to 0.0

– A two-parameter constructor that takes in a String (for
name) and a double (for price)

– A copy constructor that takes in a Sale object as a
parameter

The Sale and DiscountSale Classes

• The Sale class also has a set of accessors (getName,
getPrice), mutators (setName, setPrice), overridden
equals and toString methods, and a static
announcement method

• The Sale class has a method bill, that determines the bill
for a sale, which simply returns the price of the item

• It has two methods, equalDeals and lessThan, each of
which compares two sale objects by comparing their bills and
returns a boolean value

The Sale and DiscountSale Classes

• The DiscountSale class inherits the instance variables and
methods from the Sale class

• In addition, it has its own instance variable, discount (a
percent of the price), and its own suitable constructor
methods, accessor method (getDiscount), mutator
method (setDiscount), overriden toString method,
and static announcement method

• The DiscountSale class has its own bill method which
computes the bill as a function of the discount and the
price

The Sale and DiscountSale Classes

• The Sale class lessThan method
– Note the bill() method invocations:

public boolean lessThan (Sale otherSale)
{
 if (otherSale == null)
 {
 System.out.println("Error: null object");
 System.exit(0);
 }
 return (bill() < otherSale.bill());
}

The Sale and DiscountSale Classes

• The Sale class bill() method:
 public double bill()
 {
 return price;
 }

• The DiscountSale class bill() method:
 public double bill()
 {
 double fraction = discount/100;
 return (1 - fraction) * getPrice();
 }

• Given the following in a program:
 . . .
Sale simple = new sale("floor mat", 10.00);
DiscountSale discount = new
 DiscountSale("floor mat", 11.00, 10);
 . . .
if (discount.lessThan(simple))
 System.out.println("$" + discount.bill() +
 " < " + "$" + simple.bill() +
 " because late-binding works!");
 . . .

– Output would be:

$9.90 < $10 because late-binding works!

The Sale and DiscountSale Classes

The Sale and DiscountSale Classes

• In the previous example, the boolean expression in the if
statement returns true

• As the output indicates, when the lessThan method in the
Sale class is executed, it knows which bill() method to
invoke
– The DiscountSale class bill() method for discount, and the
Sale class bill() method for simple

• Note that when the Sale class was created and compiled,
the DiscountSale class and its bill() method did not
yet exist
– These results are made possible by late-binding

Pitfall: No Dynamic Binding for Static Methods

• When the decision of which definition of a method
to use is made at compile time, that is called static
binding
– This decision is made based on the type of the variable

naming the object

• Java uses static, not late, binding with private,
final, and static methods
– In the case of private and final methods, late binding

would serve no purpose
– However, in the case of a static method invoked using a

calling object, it does make a difference

Pitfall: No Dynamic Binding for Static Methods

• The Sale class announcement() method:

public static void announcement()
{
 System.out.println("Sale class");
}

• The DiscountSale class announcement()
method:
public static void announcement()
{
 System.out.println("DiscountSale class");
}

Pitfall: No Dynamic Binding for Static Methods

• In the previous example, the the simple
(Sale class) and discount
(DiscountClass) objects were created

• Given the following assignment:
simple = discount;

– Now the two variables point to the same object

– In particular, a Sale class variable names a
DiscountClass object

• Given the invocation:
simple.announcement();

– The output is:

Sale class

• Note that here, announcement is a static
method invoked by a calling object (instead of
its class name)
– Therefore the type of simple is determined by its

variable name, not the object that it references

Pitfall: No Dynamic Binding for Static Methods

The final Modifier

• A method marked final indicates that it cannot be
overridden with a new definition in a derived class
– If final, the compiler can use early binding with the

method

public final void someMethod() { . . . }

• A class marked final indicates that it cannot be
used as a base class from which to derive any other
classes

• If an appropriate toString method is defined for a class,
then an object of that class can be output using System.
out.println

Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale);

– Output produced:

tire gauge Price and total cost = $9.95

• This works because of late binding

Dynamic Binding with toString

Dynamic Binding with toString
• One definition of the method println takes a single

argument of type Object:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}
– In turn, It invokes the version of println that takes a
String argument

• Note that the println method was defined before the
Sale class existed

• Yet, because of late binding, the toString method
from the Sale class is used, not the toString from
the Object class

An Object knows the Definitions of its Methods

• The type of a class variable determines which
method names can be used with the variable
– However, the object named by the variable determines

which definition with the same method name is used

• A special case of this rule is as follows:
– The type of a class parameter determines which method

names can be used with the parameter
– The argument determines which definition of the method

name is used

Upcasting and Downcasting

• Upcasting is when an object of a derived class is
assigned to a variable of a base class (or any ancestor
class)

Sale saleVariable; //Base class
DiscountSale discountVariable = new
 DiscountSale("paint", 15,10); //Derived class
saleVariable = discountVariable; //Upcasting
System.out.println(saleVariable.toString());

• Because of late binding, toString above uses the
definition given in the DiscountSale class

Upcasting and Downcasting

• Downcasting is when a type cast is performed from a base
class to a derived class (or from any ancestor class to any
descendent class)
– Downcasting has to be done very carefully
– In many cases it doesn't make sense, or is illegal:

discountVariable = //will produce
 (DiscountSale)saleVariable;//run-time error

discountVariable = saleVariable //will produce
 //compiler error

– There are times, however, when downcasting is necessary, e.g., inside
the equals method for a class:

Sale otherSale = (Sale)otherObject;//downcasting

Pitfall: Downcasting

• It is the responsibility of the programmer to
use downcasting only in situations where it
makes sense
– The compiler does not check to see if downcasting

is a reasonable thing to do

• Using downcasting in a situation that does not
make sense usually results in a run-time error

Tip: Checking to See if Downcasting is
Legitimate

• Downcasting to a specific type is only sensible if the
object being cast is an instance of that type
– This is exactly what the instanceof operator tests for:

object instanceof ClassName

– It will return true if object is of type ClassName
– In particular, it will return true if object is an instance of

any descendent class of ClassName

