
Lecture 08 - Abstract Classes and
Interfaces Part 1

Slides adapted from Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

CS202: Introduction to Object Oriented Programming
Victor Mejia

CSULA

Today’s Topics:

● Introduction - Abstract Classes

● Case Study: Calendar and Gregorian Calendar

● Introduction - Interfaces

● The Comparable Interface

Introduction

Inheritance Hierarchy

More general
less specific

Less general
more specific

Person

Student extends
Person

Inheritance Hierarchy

More general
less specific

Less general
more specific

Sometimes a superclass
is so abstract that it
cannot be used to create
any specific instances.
Such a class is referred
to as an abstract class.

Motivations

● In the inheritance hierarchy, classes become
more specific and concrete with each new
subclass.

● If you move from a subclass back up to a
superclass, the classes become more general
and less specific. Class design should ensure
that a superclass contains common features of
its subclasses. Sometimes a superclass is so
abstract that it cannot be used to create any
specific instances. Such a class is referred to
as an abstract class

Abstract Classes and Abstract Methods

Abstract Classes and Abstract Methods

❖ GeometricObject.java
❖ Circle.java
❖ Rectangle.java
❖ TestGeometricObject.java
❖ TestCalendar.java

package: lecture08.abstractclasses

abstract method in abstract class

● An abstract method cannot be contained in a
nonabstract class.

incorrect:

public class A {
public abstract void unfinished();

}

abstract method in abstract class

● An abstract method cannot be contained in a
nonabstract class.

correct:

public abstract class A {
public abstract void unfinished();

}

abstract method in abstract class

● If a subclass of an abstract superclass does
not implement all the abstract methods, the
subclass must be defined abstract.

● In other words, in a nonabstract subclass
extended from an abstract class, all the
abstract methods must be implemented,
even if they are not used in the subclass.

object cannot be created from abstract class
● An abstract class cannot be instantiated using

the new operator, but you can still define its
constructors, which are invoked in the
constructors of its subclasses.

● For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

abstract class without abstract method

● A class that contains abstract methods must
be abstract. However, it is possible to define
an abstract class that contains no abstract
methods.

● In this case, you cannot create instances of
the class using the new operator. This class is
used as a base class for defining a new
subclass.

superclass of abstract class may be concrete

● A subclass can be abstract even if its
superclass is concrete.

● For example, the Object class is concrete, but
its subclasses, such as GeometricObject, may
be abstract.

concrete method overridden to be abstract

● A subclass can override a method from its
superclass to define it abstract.

● This is rare, but useful when the
implementation of the method in the superclass
becomes invalid in the subclass.

● In this case, the subclass must be defined
abstract.

1616

abstract class as type

● You cannot create an instance from an abstract
class using the new operator, but an abstract
class can be used as a data type.

● Therefore, the following statement, which
creates an array whose elements are of
GeometricObject type, is correct.

GeometricObject[] geo = new GeometricObject[10];

Case Study: The GregorianCalendar
Class

1818

The Abstract Calendar Class and Its
GregorianCalendar subclass

The Abstract Calendar Class and Its
GregorianCalendar subclass

An instance of java.util.Date represents a specific
instant in time with millisecond precision. java.util.
Calendar is an abstract base class for extracting
detailed information such as year, month, date,
hour, minute and second from a Date object.
Subclasses of Calendar can implement specific
calendar systems such as Gregorian calendar, Lunar
Calendar and Jewish calendar. Currently, java.util.
GregorianCalendar for the Gregorian calendar is
supported in the Java API.

20

The GregorianCalendar Class

You can use new GregorianCalendar() to
construct a default GregorianCalendar with the
current time and use new GregorianCalendar
(year, month, date) to construct a
GregorianCalendar with the specified year,
month, and date. The month parameter is 0-
based, i.e., 0 is for January.

2121

The get Method in Calendar Class
The get(int field) method defined in the Calendar class is useful
to extract the date and time information from a Calendar object.
The fields are defined as constants, as shown in the following.

Interfaces

2323

Interfaces

What is an interface?
Why is an interface useful?
How do you define an interface?
How do you use an interface?

2424

What is an interface?
 Why is an interface useful?

● An interface is a classlike construct that
contains only constants and abstract
methods.

● In many ways, an interface is similar to an
abstract class, but the intent of an interface
is to specify common behavior for objects.

● For example, you can specify that the
objects are comparable, edible, cloneable
using appropriate interfaces.

2525

Define an Interface
To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName {
 constant declarations;
 abstract method signatures;
}

Example:
public interface Edible {
 /** Describe how to eat */
 public abstract String howToEat();
}

2626

Interface is a Special Class
An interface is treated like a special class in
Java. Each interface is compiled into a
separate bytecode file, just like a regular class.
Like an abstract class, you cannot create an
instance from an interface using the new
operator, but in most cases you can use an
interface more or less the same way you use
an abstract class. For example, you can use
an interface as a data type for a variable, as
the result of casting, and so on.

Edible Interface

package: lecture08.interfaces.edible

2828

Example
You can now use the Edible interface to specify
whether an object is edible. This is accomplished by
letting the class for the object implement this interface
using the implements keyword. For example, the
classes Chicken and Fruit implement the Edible
interface (See TestEdible).

Example

3030

Omitting Modifiers in Interfaces
All data fields are public final static and all methods are
public abstract in an interface. For this reason, these
modifiers can be omitted, as shown below:

A constant defined in an interface can be accessed using
syntax InterfaceName.CONSTANT_NAME (e.g., T1.K).

The Comparable Interface

3232

The Comparable Interface

The Comparable interface defines the
compareTo method for comparing objects.

3333

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> {
 public int compareTo(E o);
}

3434

Integer and BigInteger Classes

String and Date Classes

3535

Example
1 System.out.println(new Integer(3).compareTo(new Integer
(5)));
2 System.out.println("ABC".compareTo("ABE"));
3 java.util.Date date1 = new java.util.Date(2013, 1, 1);
4 java.util.Date date2 = new java.util.Date(2012, 1, 1);
5 System.out.println(date1.compareTo(date2));

3636

Generic sort Method

Let n be an Integer object, s be a String
object, and d be a Date object. All the following
expressions are true.

SortComparableObjects.java

The java.util.Arrays.sort(array) method requires
that the elements in an array are instances of
Comparable<E>.

Defining Classes to Implement Comparable

Comparable Interfce

package: lecture08.interfaces.
comparable

