
Lecture 09 - Abstract Classes and
Interfaces Part 2

Slides adapted from Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

CS202: Introduction to Object Oriented Programming
Victor Mejia

CSULA

Today’s Topics:

● Quick Recap - Abstract Classes and Interfaces

● The Cloneable Interface

● Abstract Classes vs. Interfaces

● Class Design

Introduction

Inheritance Hierarchy

More general
less specific

Less general
more specific

Person

Student extends
Person

Inheritance Hierarchy

More general
less specific

Less general
more specific

Sometimes a superclass
is so abstract that it
cannot be used to create
any specific instances.
Such a class is referred
to as an abstract class.

Abstract Classes and Abstract Methods

abstract method in abstract class

● An abstract method cannot be contained in a
nonabstract class.

correct:

public abstract class A {
public abstract void unfinished();

}

Interfaces

99

Interfaces

What is an interface?
Why is an interface useful?
How do you define an interface?
How do you use an interface?

1010

What is an interface?
 Why is an interface useful?

● An interface is a classlike construct that
contains only constants and abstract
methods.

● In many ways, an interface is similar to an
abstract class, but the intent of an interface
is to specify common behavior for objects.

● For example, you can specify that the
objects are comparable, edible, cloneable
using appropriate interfaces.

1111

Define an Interface
To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName {
 constant declarations;
 abstract method signatures;
}

Example:
public interface Edible {
 /** Describe how to eat */
 public abstract String howToEat();
}

1212

Interface is a Special Class
An interface is treated like a special class in
Java. Each interface is compiled into a
separate bytecode file, just like a regular
class. Like an abstract class, you cannot
create an instance from an interface using the
new operator, but in most cases you can use
an interface more or less the same way you
use an abstract class. For example, you can
use an interface as a data type for a variable,
as the result of casting, and so on.

The Cloneable Interface

1414

The Cloneable Interface

package java.lang;

public interface Cloneable {

}

“The Cloneable interface specifies that an object
can be cloned”.

1515

The Cloneable Interfaces

package java.lang;

public interface Cloneable {

}

Marker Interface: An empty interface.

A marker interface does not contain constants or
methods. It is used to denote that a class possesses
certain desirable properties. A class that implements
the Cloneable interface is marked cloneable, and its
objects can be cloned using the clone() method
defined in the Object class.

1616

The Cloneable Interfaces

A class implements the Cloneable interface to
indicate to the Object.clone() method that it is legal
for that method to make a field-for-field copy of
instances of that class.

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#clone--

1717

Examples
Many classes (e.g., Date and Calendar) in the Java library
implement Cloneable. Thus, the instances of these classes can
be cloned. For example, the following code

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +

 (calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +

 calendar.equals(calendarCopy));

displays

calendar == calendarCopy is false

calendar.equals(calendarCopy) is true

Implementing Cloneable Interface
To define a custom class that implements the
Cloneable interface, the class must override the
clone() method in the Object class. The following
code defines a class named House that implements
Cloneable and Comparable.

House.java

Shallow vs. Deep Copy
House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Shallow Copy

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Deep Copy

Shallow vs. Deep Copy

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Deep Copy

Shallow vs. Deep Copy

2222

Interfaces vs. Abstract Classes
In an interface, the data must be constants; an abstract class
can have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete
methods.

Interfaces vs. Abstract Classes

2424

Interfaces vs. Abstract Classes, cont.

Suppose that c is an instance of Class2. c is also an instance of Object,
Class1, Interface1, Interface1_1, Interface1_2, Interface2_1, and
Interface2_2.

All classes share a single root, the Object class, but there is no single root
for interfaces. Like a class, an interface also defines a type. A variable of an
interface type can reference any instance of the class that implements the
interface. If a class extends an interface, this interface plays the same role
as a superclass. You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa.

2525

Caution: conflict interfaces
In rare occasions, a class may implement two
interfaces with conflict information (e.g., two same
constants with different values or two methods with
same signature but different return type). This type of
errors will be detected by the compiler.

2626

Whether to use an interface or a class?
Abstract classes and interfaces can both be used to
model common features. How do you decide whether to
use an interface or a class? In general, a strong is-a
relationship that clearly describes a parent-child
relationship should be modeled using classes. For
example, a staff member is a person. A weak is-a
relationship, also known as an is-kind-of relationship,
indicates that an object possesses a certain property. A
weak is-a relationship can be modeled using interfaces.
For example, all strings are comparable, so the String
class implements the Comparable interface. You can
also use interfaces to circumvent single inheritance
restriction if multiple inheritance is desired. In the case of
multiple inheritance, you have to design one as a
superclass, and others as interface.

Class Design Guidelines

28

Designing a Class

(Coherence)
● A class should describe a single entity, and

all the class operations should logically fit
together to support a coherent purpose.

● You can use a class for students, for
example, but you should not combine
students and staff in the same class,
because students and staff have different
entities.

Designing a Class, cont.
(Separating responsibilities) A single entity with too
many responsibilities can be broken into several
classes to separate responsibilities. The classes
String, StringBuilder, and StringBuffer all deal with
strings, for example, but have different
responsibilities. The String class deals with
immutable strings, the StringBuilder class is for
creating mutable strings, and the StringBuffer class
is similar to StringBuilder except that StringBuffer
contains synchronized methods for updating
strings.

Designing a Class, cont.

Classes are designed for reuse. Users can
incorporate classes in many different
combinations, orders, and environments.
Therefore, you should design a class that
imposes no restrictions on what or when the
user can do with it, design the properties to
ensure that the user can set properties in any
order, with any combination of values, and
design methods to function independently of
their order of occurrence.

Designing a Class, cont.

Provide a public no-arg constructor and override
the equals method and the toString method
defined in the Object class whenever possible.

Designing a Class, cont.

Follow standard Java programming style and
naming conventions. Choose informative
names for classes, data fields, and methods.
Always place the data declaration before the
constructor, and place constructors before
methods. Always provide a constructor and
initialize variables to avoid programming
errors.

Using Visibility Modifiers
Each class can present two contracts – one for the
users of the class and one for the extenders of the
class. Make the fields private and accessor
methods public if they are intended for the users of
the class. Make the fields or method protected if
they are intended for extenders of the class. The
contract for the extenders encompasses the
contract for the users. The extended class may
increase the visibility of an instance method from
protected to public, or change its implementation,
but you should never change the implementation in
a way that violates that contract.

Using Visibility Modifiers, cont.

● A class should use the private modifier to
hide its data from direct access by clients.

● You can use get methods and set methods to
provide users with access to the private data,
but only to private data you want the user to
see or to modify.

● A class should also hide methods not
intended for client use.

Using the static Modifier

A property that is shared by all the
instances of the class should be
declared as a static property.

