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Today’s Topics:

● Processing Primitive Data Type Values as Objects
● The BigInteger and BigDecimal Classes
● Strings



Processing Primitive Types as 
Object Types



Wrapper Classes

● Primitive data types are not objects
● language’s performance would be affected if 

every data type would be an object
● many Java methods require the use of objects 

as arguments
● Java offers a convenient way to incorporate, 
or wrap, a primitive data type into an object

  example: wrapping int into the Integer class



NOTE: The wrapper classes do not have no-arg 
constructors.

Wrapper Classes



● Constructors
● Class Constants MAX_VALUE, 
MIN_VALUE

● Conversion Methods

The Integer and Double Classes



You can construct a wrapper object :
● either from a primitive data type value 
● or from a string representing the numeric value. 

The constructors for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

Numeric Wrapper Class Constructors



Each numerical wrapper class has the constants 
MAX_VALUE and MIN_VALUE. 
● MAX_VALUE represents the maximum value of the 

corresponding primitive data type. 
● For Byte, Short, Integer, and Long, MIN_VALUE 

represents the minimum byte, short, int, and 
long values. 

● For Float and Double, MIN_VALUE represents the 
minimum positive float and double values.

The Integer and Double Constants



The following statements display the maximum integer 
(2,147,483,647), the minimum positive float (1.4E-45), 
and the maximum double floating-point number 
(1.79769313486231570e+308d)

The Integer and Double Constants



● Each numeric wrapper class implements the abstract 
methods doubleValue, floatValue, intValue, 
longValue, and shortValue, which are defined in the 
Number class. 

● These methods “convert” objects into primitive type 
values. 

Conversion Methods



returns 1, 0, or -1, if this number is greater than, equal to, 
or less than the other number.

compareTo Method



The numeric wrapper classes have a useful class method, 
valueOf(String s). This method creates a new object 
initialized to the value represented by the specified string. 
For example:

Double doubleObject = Double.valueOf
("12.4");

Integer integerObject = Integer.valueOf
("12");

The static valueOf Methods



● You have used the parseInt method in the Integer 
class to parse a numeric string into an int value and the 
parseDouble method in the Double class to parse a 
numeric string into a double value. 

● Each numeric wrapper class has two overloaded 
parsing methods to parse a numeric string into an 
appropriate numeric value. 

Parsing Strings Into Numbers



Parsing Strings Into Numbers



A primitive type value can be automatically converted to an object using 
a wrapper class, and vice versa, depending on the context.

boxing: Converting a primitive value to a wrapper object 

unboxing: Converting a wrapper object to a primitive value

Automatic Conversion Between Primitive Types 
and Wrapper Class Types



Automatic Conversion Between Primitive Types 
and Wrapper Class Types



BigInteger and BigDecimal Classes



● If you need to compute with very large 
integers or high precision floating-point 
values, you can use the BigInteger and 
BigDecimal classes in the java.math 
package. 

● Both are immutable. 
● Both extend the Number class and 

implement the Comparable interface. 



BigInteger a = new BigInteger
("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 
9223372036854775807 * 2

System.out.println(c); 

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.
ROUND_UP);

System.out.println(c);



Strings



Intro

● key point: A String object is immutable: its 
contents cannot be changed once the string is 
created

● Strings are objects (reference types)
● Methods you have used before:

○ substring
○ charAt
○ length
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The String Class
● Constructing a String:

String message = "Welcome to Java“;
String message = new String("Welcome to Java“);
String s = new String();

● Obtaining String length and Retrieving Individual Characters in a 
string

● String Concatenation (concat)
● Substrings (substring(index), substring(start, end))
● Comparisons (equals, compareTo)
● String Conversions
● Finding a Character or a Substring in a String
● Conversions between Strings and Arrays
● Converting Characters and Numeric Values to Strings
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Constructing Strings

String newString = new String(stringLiteral);

 

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a 
shorthand initializer for creating a string:

String message = "Welcome to Java";
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Constructing Strings

You can also create a string from an array of characters.

char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};

String message = new String(charArray);
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Strings Are Immutable

A String object is immutable; its contents cannot be 
changed. 

Does the following code change the contents of the 
string? 

       String s = "Java";
      s = "HTML";
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Trace Code

       String s = "Java";
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Trace Code

       String s = "Java";

       s = "HTML";
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Interned Strings

Since strings are immutable and are 
frequently used, to improve efficiency and 
save memory, the JVM uses a unique 
instance for string literals with the same 
character sequence. Such an instance is 
called interned.
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Examples

display
   s1 == s is false    
   s1 == s3 is true

A new object is created if you use 
the new operator. 

If you use the string initializer, no 
new object is created if the interned 
object is already created.



Trace Code
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Replacing and Splitting Strings 
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Examples

"Welcome".replace('e', 'A') returns a new string, 
WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string, 
WABlcome.
"Welcome".replace("e", "AB") returns a new string, 
WABlcomAB.
"Welcome".replace("el", "AB") returns a new string, 
WABcome.
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Splitting a String

String[] tokens = "Java$C#$Ruby".split("$", 0);

for (int i = 0; i < tokens.length; i++) 

  System.out.print(tokens[i] + " ");

Java C# Ruby



34

Convert Character and Numbers to Strings

The String class provides several static 
valueOf methods for converting a character, 
an array of characters, and numeric values to 
strings. These methods have the same name 
valueOf with different argument types char, 
char[], double, long, int, and float. For 
example, to convert a double value to a 
string, use String.valueOf(5.44). The return 
value is string consists of characters ‘5’, ‘.’, 
‘4’, and ‘4’. 
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StringBuilder and StringBuffer

The StringBuilder/StringBuffer class is an 
alternative to the String class. In general, a 
StringBuilder/StringBuffer can be used 
wherever a string is used. 
StringBuilder/StringBuffer is more flexible 
than String. You can add, insert, or append 
new contents into a string buffer, whereas the 
value of a String object is fixed once the 
string is created. 
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StringBuilder Constructors
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Examples

stringBuilder.append("Java");
stringBuilder.insert(11, "HTML and ");
stringBuilder.delete(8, 11) changes the builder to 
Welcome Java.
stringBuilder.deleteCharAt(8) changes the builder to 
Welcome o Java.
stringBuilder.reverse() changes the builder to avaJ ot 
emocleW.
stringBuilder.replace(11, 15, "HTML") 
   changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to 
welcome to Java. 
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Modifying Strings in the StringBuilder class
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The toString, capacity, length, setLength, 
and charAt Methods 


