
05 - Wrapper Classes and
Strings

Slides adapted from Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

CS202: Introduction to Object Oriented Programming
Victor Mejia

CSULA

Today’s Topics:

● Processing Primitive Data Type Values as Objects
● The BigInteger and BigDecimal Classes
● Strings

Processing Primitive Types as
Object Types

Wrapper Classes

● Primitive data types are not objects
● language’s performance would be affected if

every data type would be an object
● many Java methods require the use of objects

as arguments
● Java offers a convenient way to incorporate,
or wrap, a primitive data type into an object

 example: wrapping int into the Integer class

NOTE: The wrapper classes do not have no-arg
constructors.

Wrapper Classes

● Constructors
● Class Constants MAX_VALUE,
MIN_VALUE

● Conversion Methods

The Integer and Double Classes

You can construct a wrapper object :
● either from a primitive data type value
● or from a string representing the numeric value.

The constructors for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

Numeric Wrapper Class Constructors

Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.
● MAX_VALUE represents the maximum value of the

corresponding primitive data type.
● For Byte, Short, Integer, and Long, MIN_VALUE

represents the minimum byte, short, int, and
long values.

● For Float and Double, MIN_VALUE represents the
minimum positive float and double values.

The Integer and Double Constants

The following statements display the maximum integer
(2,147,483,647), the minimum positive float (1.4E-45),
and the maximum double floating-point number
(1.79769313486231570e+308d)

The Integer and Double Constants

● Each numeric wrapper class implements the abstract
methods doubleValue, floatValue, intValue,
longValue, and shortValue, which are defined in the
Number class.

● These methods “convert” objects into primitive type
values.

Conversion Methods

returns 1, 0, or -1, if this number is greater than, equal to,
or less than the other number.

compareTo Method

The numeric wrapper classes have a useful class method,
valueOf(String s). This method creates a new object
initialized to the value represented by the specified string.
For example:

Double doubleObject = Double.valueOf
("12.4");

Integer integerObject = Integer.valueOf
("12");

The static valueOf Methods

● You have used the parseInt method in the Integer
class to parse a numeric string into an int value and the
parseDouble method in the Double class to parse a
numeric string into a double value.

● Each numeric wrapper class has two overloaded
parsing methods to parse a numeric string into an
appropriate numeric value.

Parsing Strings Into Numbers

Parsing Strings Into Numbers

A primitive type value can be automatically converted to an object using
a wrapper class, and vice versa, depending on the context.

boxing: Converting a primitive value to a wrapper object

unboxing: Converting a wrapper object to a primitive value

Automatic Conversion Between Primitive Types
and Wrapper Class Types

Automatic Conversion Between Primitive Types
and Wrapper Class Types

BigInteger and BigDecimal Classes

● If you need to compute with very large
integers or high precision floating-point
values, you can use the BigInteger and
BigDecimal classes in the java.math
package.

● Both are immutable.
● Both extend the Number class and

implement the Comparable interface.

BigInteger a = new BigInteger
("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); //
9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.
ROUND_UP);

System.out.println(c);

Strings

Intro

● key point: A String object is immutable: its
contents cannot be changed once the string is
created

● Strings are objects (reference types)
● Methods you have used before:

○ substring
○ charAt
○ length

22

The String Class
● Constructing a String:

String message = "Welcome to Java“;
String message = new String("Welcome to Java“);
String s = new String();

● Obtaining String length and Retrieving Individual Characters in a
string

● String Concatenation (concat)
● Substrings (substring(index), substring(start, end))
● Comparisons (equals, compareTo)
● String Conversions
● Finding a Character or a Substring in a String
● Conversions between Strings and Arrays
● Converting Characters and Numeric Values to Strings

23

Constructing Strings

String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a
shorthand initializer for creating a string:

String message = "Welcome to Java";

24

Constructing Strings

You can also create a string from an array of characters.

char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};

String message = new String(charArray);

25

Strings Are Immutable

A String object is immutable; its contents cannot be
changed.

Does the following code change the contents of the
string?

 String s = "Java";
 s = "HTML";

26

Trace Code

 String s = "Java";

27

Trace Code

 String s = "Java";

 s = "HTML";

28

Interned Strings

Since strings are immutable and are
frequently used, to improve efficiency and
save memory, the JVM uses a unique
instance for string literals with the same
character sequence. Such an instance is
called interned.

29

Examples

display
 s1 == s is false
 s1 == s3 is true

A new object is created if you use
the new operator.

If you use the string initializer, no
new object is created if the interned
object is already created.

Trace Code

31

Replacing and Splitting Strings

32

Examples

"Welcome".replace('e', 'A') returns a new string,
WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string,
WABlcome.
"Welcome".replace("e", "AB") returns a new string,
WABlcomAB.
"Welcome".replace("el", "AB") returns a new string,
WABcome.

33

Splitting a String

String[] tokens = "Java$C#$Ruby".split("$", 0);

for (int i = 0; i < tokens.length; i++)

 System.out.print(tokens[i] + " ");

Java C# Ruby

34

Convert Character and Numbers to Strings

The String class provides several static
valueOf methods for converting a character,
an array of characters, and numeric values to
strings. These methods have the same name
valueOf with different argument types char,
char[], double, long, int, and float. For
example, to convert a double value to a
string, use String.valueOf(5.44). The return
value is string consists of characters ‘5’, ‘.’,
‘4’, and ‘4’.

36

StringBuilder and StringBuffer

The StringBuilder/StringBuffer class is an
alternative to the String class. In general, a
StringBuilder/StringBuffer can be used
wherever a string is used.
StringBuilder/StringBuffer is more flexible
than String. You can add, insert, or append
new contents into a string buffer, whereas the
value of a String object is fixed once the
string is created.

37

StringBuilder Constructors

38

Examples

stringBuilder.append("Java");
stringBuilder.insert(11, "HTML and ");
stringBuilder.delete(8, 11) changes the builder to
Welcome Java.
stringBuilder.deleteCharAt(8) changes the builder to
Welcome o Java.
stringBuilder.reverse() changes the builder to avaJ ot
emocleW.
stringBuilder.replace(11, 15, "HTML")
 changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to
welcome to Java.

39

Modifying Strings in the StringBuilder class

40

The toString, capacity, length, setLength,
and charAt Methods

