

An interesting example (algorithm)

- 1. If there's no # on the tape (or more than one #), reject.
- 2. While there is a bit to the left of #, Replace the first bit with X, and check if the first bit b to the right of the # is identical. (If not, reject.) Replace that bit b with an X too.
- 3. If there's a bit to the right of #, then reject else accept

The corresponding Turing machine

- 2. While there is a bit to the left of #, Replace the first bit with X, and check if the first bit b to the right of the # is identical. (If not, reject.) Replace that bit b with an X too.
- 3. If there's a bit to the right of #, then reject else accept

More examples

Design a Turing machine which decides these languages.

$$B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$$

 $C = \{ w \mid w \text{ has equal number of 1s and 0s} \}$

Palindromes can be easily recognized by a PDA

EVEN-LENGTH PALINDROMES

$$\Sigma = \{a, b, c, ..., z\}, \sigma \in \Sigma$$

Hilbert and his 10th Problem

- In 1900: Posed 23 "challenge problems" in Mathematics
- The 10th problem:
 Devise an algorithm to decide
 if a given polynomial has an integral root.
- We now know: This is undecidable!
 - Needed a definition of "algorithm", which was given by Church and Turing (independently)