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1 Overview

• Formal Defintion of Fully Homomorphic Encryption

• FHE vs CCA Security

• FHE: from private key to public key

2 Formal Definition of Fully Homomorphic Encryption

2.1 Definition from last lecture

Fully Homomorphic Encryption:

• KeyGen(1n)→ (ek, dk)

• Decdk(Encek(m)) = m, m ∈M

• Single message eval: for any “given function” f it holds that:
Decdk(Evalek(f, Encek(m)) = f(m) (with probability 1− negl(n)).

• Semantic Security: for any polytime adversary ADV and any two messages m1,m2 it holds
that Pr[ADV(ek, Encek(m0) = 1]−Pr[ADV(ek, Encek(m1) = 1] ≤ negl(n).

This definition is almost what we want, but there are a couple more properties which we must add
before arriving at a complete definition of fully homomorphic encryption that truly satisfies all the
properties we want.

2.2 Multi-message Eval

Multi-message eval: For any “given function” f : Mk → M and c1, ..., ck where ci =Encek(mi),
Decdk(Evalek(f, c1, ..., ck)) = f(m1, ...,mk).

We will concern ourselves with the case of two-message evaluation.

Theorem 1. Two-message eval implies single-message eval (or more generally, k message eval
implies k − 1 eval).

Proof. Given f :M→M, convert f to f ′ :M2 →M such that f ′(x, y) = f(x).

Research Question: Is the reverse of the above also true?
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2.3 Trivial FHE?

We can define a trivial FHE that satisfies our current definition by using Eval(c, f) = (c, f) and
pushing all the work to the decryption with Dec(c1, f1, f2, ..., fk) = fk(...f1(Dec(c))...). Note that
none of the applications of the FHE that we discussed actually works with this cheat (e.g. think
of the delegation of computation).

Compactness. A correct definition of fully homomorphic encryption should not allow the above
trick, so we need to add a compactness requirement: |Eval(...)| ≤ poly(n). This polynomial is
independent of k. We call this condition the “compactness” condition, and is the standard way of
defining FHE.

Statistical variant. There is also a harder to achieve, statistical variant of this restriction: (pk,
Eval(f, Enc(x))) ≡negl(n) (pk, Enc(f(x))).

2.4 Final Definition

The final definition of homomorphic encryption is the same as the original one from last last lecture
shown above but with the addition of multi-message eval and the compactness requirement.

3 No CCA Security

Recall that in CPA or semantic security, the adversary who knows pk is given an encryption y and
has to distinguish between whether y Enc(1) and Enc(0). The CCA security game is the same
except that before attempting to distinguish between the encryptions, the adversary can ask for
anything other than y to be decrypted. Fully homomorphic encryption is not CCA secure because
the adversary could ask for the decryption of y′ =Enc(f(x)) by using Eval(...) to modify x without
decrypting it. The adversary can then take f−1(Dec(y′)) to recover x. f in this case could be as
simple as x⊕ 1.

4 From Private Key to Public Key Encryption

Given a private key encryption scheme (Enc, Dec, Eval), we want to get a public-key scheme
(Enc,Dec,Eval,KeyGen). This, in general is very hard, and some “impossibility” results against
this are known [IR89]. However, when the private key scheme is already homomorphic, it is indeed
possible to elevate it to the public-key setting.

Theorem 2 ([RV10]). Assuming a given CPA-secure private key encryption scheme, the fol-
lowing is a secure public key encryption scheme. Use public key (Enc(b1),Enc(b2),...,Enc(bk),
r = (b1, ..., bn)) for random b1, . . . , bk. To encrypt bit b, choose s ∈ {0, 1}k at random so that
〈s, r〉 = ⊕si=1bi. Then use Eval to get the encryption of the XOR of {bi}si=1.

Proof. We will not prove the theorem here, but the “left-over hash lemma” that we will see in the
next sessions is at the heart of the proof.

A special case of Left-over hash lemma: if we are given r = (b1, ..., bk) chosen at random and
given only m bits of information about s = (s1, ..., sk) which is also random, the distribution of
〈s, r〉, the inner product of s and r, remains a random bit.

4-2



References

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 44–61. ACM Press, 1989.

[RV10] Guy N. Rothblum and Salil P. Vadhan. Are PCPs inherent in efficient arguments? Com-
putational Complexity, 19(2):265–304, 2010.

4-3


