
CS 4501-6501 Topics in Cryptography January 28, 2015

Lecture 5
Lecturer: Mohammad Mahmoody Scribe: Ameer Mohammed

1 Learning with Errors: Motivation

An important goal in cryptography is to find problems that are conjectured to be computa-
tionally hard to solve as well as structurally well-suited for cryptographic constructions to
be based on. Examples of such problems include number-theoretic assumptions (e.g. integer
factorization is hard). Here we will discuss another such problem called the learning with
errors (LWE) problem that was introduced by Regev in [Reg05] where it was shown that the
hardness of LWE can be reduced to the hardness of the approximate shortest vector problem
(SVP), a well-studied lattice problem that is believed to be computationally hard. Interest-
ingly, unlike classical number-theoretical assumptions, LWE’s hardness extends to quantum
algorithms as well, making it a suitable candidate for use in post-quantum cryptography.

Besides its proven hardness, LWE is also a versatile problem that was used as the basis
for several diverse constructions including public-key encryption schemes [Reg05, PW08],
oblivious transfer protocols [PVW08] and, more pertinently, fully homomorphic encryption
schemes [BV11, BGV12, GSW13]. To get a better understanding of the LWE problem,
we will first look at some related concepts in coding theory before transitioning to their
lattice-based variants.

2 Coding Theory

One of the more widely studied topics in coding theory is error correcting codes where we
are interested in finding a (usually linear) message-encoding function f that transforms a
message ~x ∈ {0, 1}n into a codeword f(~x) ∈ {0, 1}m where m ≥ n such that, even after
flipping a “large” fraction of the bits in f(~x), we are still able to (efficiently) decode it and
get back ~x.

2.1 Linear Codes Background

Throughout this section, we focus on working in GF(2). We first recall some general defini-
tions from coding theory:

Definition 1 (Hamming distance). For any two vectors ~x, ~y ∈ {0, 1}m, their Hamming
distance hd(~x, ~y) is the number of positions i where ~xi 6= ~yi

Definition 2 (Hamming weight). For any vector ~x ∈ {0, 1}m, its Hamming weight hw(~x)
is the number of positions i where ~xi = 1

5-1

Define A ∈ Fm×n
2 to be some binary matrix. We represent the linear encoding operation as

a function fA : Fn
2 → Fm

2 that accepts a message ~x ∈ {0, 1}n and outputs the corresponding
codeword fA(~x) = A~x = ~y ∈ {0, 1}m. A linear code C is simply the set of codewords
generated by matrix A which form an n-dimensional subspace in Fm

2 .
If the codeword ~y is error-free (no bits were flipped) and the matrix A is full column

rank (or, if n = m, it is invertible/non-singular) then we can uniquely and efficiently recover
~x using Gaussian elimination. However, this is not always the case when we add noise to ~y.
Consider, for example, the effect of flipping half the bits in ~y. This would result in a string
~z that we cannot decode because if we have another codeword ~y′ such that hd(~y, ~y′) = m,
then we cannot determine whether ~z is actually ~y or ~y′ without the noise.

Thus, it is important to determine the error tolerance of a code, which is given by the
maximum number of bits that we can flip in ~y while preserving the ability to decode it and
get back the correct ~x. In addition, we should also take into consideration the length of the
codewords m, as we generally prefer to have m to be on the same order of n (no excessive
redundancy) while still providing comparative error tolerance. Fortunately, the following
theorem whose proof we omit shows that this is possible.

Theorem 3. There exists a linear coding function fA : Fn → Fm with m = O(n) and error
tolerance Ω(m)

For now, we can set m = 10n and the error tolerance to be m/10. We say that a linear
coding function fA is decodable if for every pair of messages ~x 6= ~x′, their Hamming distance
is hd(A~x,A~x′) ≥ m/5. This guarantees that any codeword A~x can be decoded into some
unique ~x. Note that while the encoding procedure is efficient (simple matrix multiplication),
the decoding procedure might not necessarily be so, even though, information-theoretically,
there exists a way to correctly decode a codeword. We can efficiently generate a decodable
coding function using the following theorem.

Theorem 4. A randomly chosen A ∈ Fm×n
2 can be used to get a decodable linear coding

function fA with high probability.

Lastly, we define the code distance d of a linear code fA which is the minimum Hamming
distance between any two codewords. It can be easily shown that d is also equal to the
codeword with the minimum Hamming weight. That is:

d = min
~x6=~x′

hd(A~x,A~x′) = min
~x6=0

hw(A~x) (1)

Proof. A good simple exercise!

2.2 Problem Definitions

Here we discuss the problem definitions related to coding theory that are conjectured to be
computationally hard. While it is easy to find a decodable linear code (see Theorem 4),
we do not yet know of any efficient procedure to test that it is decodable. That is, finding
the code distance d is computationally hard. By Equation (1), finding the minimum weight
among all (non-zero) codewords is also equivalently hard.

5-2

Definition 5 (Shortest vector problem). Given matrix A for some linear code fA with code
distance d, find ~y = A~x such that hw(~y) = d. That is, find the shortest non-zero vector in
{A~x | ~x ∈ {0, 1}n} ⊆ {0, 1}m

In contrast to the above problem of testing whether a linear code is decodable or not,
the following problem is based on the hardness of decoding a noisy codeword from a random
linear code.

Definition 6 (Decoding random linear codes). Given some random matrix A ∈ Fm×n
2 for

some linear code fA and a perturbed codeword ~y ← A~x + ~e where ~x ∈ {0, 1}n is chosen
uniformly at random and ~e ∈ {0, 1}m is a random error vector with weight at most m/10,
find ~x.

3 Lattice-based Cryptography

3.1 Lattices Background

Figure 1: An example of a lattice in R2

An m-dimensional lattice L is a discrete additive subgroup of Rm and is represented as
the set of all possible integer linear combinations of n linearly independent m-dimensional
(column) vectors ~a1, ...,~an. We call the matrix A = [~a1, ...,~an] the basis of lattice L and we
can define it more formally as follows:

L(A) = L(~a1, ...,~an) =

{
n∑

i=1

xi~ai : xi ∈ Z

}
= {A~x : ~x ∈ Zn}

5-3

An example of 2-dimensional lattice is shown in Figure 1 where the explicitly drawn
arrows represent a basis for the lattice from which we can generate all other points. For
any vector ~y ∈ L, we usually refer to the length of a vector ||~y|| using the Euclidean norm
however other norms are also applicable.

3.2 Problem Definitions

We list here the definitions of the relevant lattice-based problem that are conjectured to
be computationally hard. These problems are the lattice analogue of the ones described in
Section 2.2.

Definition 7 (Shortest vector problem in lattices). Given a basis A for lattice L, find the
shortest non-zero vector in L(A).

The shortest vector problem (SVP) was one of the first lattice problems to have been used
as the basis for a public-key cryptosystem [AD97]. The exact version of SVP was proven
to be NP-hard [Ajt98] and the approximate version was shown to be computationally hard
even for constant approximation factors [Kho05].

Definition 8 (Learning with Errors). For uniformly random ~x ∈ Fn define O~x to be an
LWE oracle that upon request returns a tuple (~a, 〈~a, ~x〉+ ~e) where ~a ∈ Fn is a vector chosen
uniformly at random and e ∈ F is an error term chosen from some suitable distribution.
Given m samples from O~x, where m can be arbitrary, the LWE problem is to find ~x.

Unlike the two problems in Section 2.2, the two problems showcased here are known to
be related. Specifically, Regev [Reg05] shows a reduction from approximate-SVP to LWE.
Usually, the field we use on which to perform these computations is Z∗p and the error vector
is drawn from some suitable Gaussian distribution.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the 29th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 284–293. ACM Press, 1997. See
also ECCC TR96-065.

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized reduc-
tions (extended abstract). In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, STOC ’98, pages 10–19, New York, NY, USA, 1998.
ACM.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pages 309–325, New York,
NY, USA, 2012. ACM.

5-4

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) lwe. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE,
2011.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO, pages 75–92. Springer, 2013.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices.
J. ACM, 52(5):789–808, 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, Advances in
Cryptology CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 554–571. Springer Berlin Heidelberg, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Richard E. Ladner and Cynthia Dwork, editors, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 187–196. ACM, 2008.

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC: ACM Symposium on Theory of Computing (STOC), 2005.

5-5

