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1 Learning with Errors: Motivation

An important goal in cryptography is to find problems that are conjectured to be computa-
tionally hard to solve as well as structurally well-suited for cryptographic constructions to
be based on. Examples of such problems include number-theoretic assumptions (e.g. integer
factorization is hard). Here we will discuss another such problem called the learning with
errors (LWE) problem that was introduced by Regev in [Reg05] where it was shown that the
hardness of LWE can be reduced to the hardness of the approximate shortest vector problem
(SVP), a well-studied lattice problem that is believed to be computationally hard. Interest-
ingly, unlike classical number-theoretical assumptions, LWE’s hardness extends to quantum
algorithms as well, making it a suitable candidate for use in post-quantum cryptography.

Besides its proven hardness, LWE is also a versatile problem that was used as the basis
for several diverse constructions including public-key encryption schemes [Reg05, PW08],
oblivious transfer protocols [PVW08] and, more pertinently, fully homomorphic encryption
schemes [BV11, BGV12, GSW13]. To get a better understanding of the LWE problem,
we will first look at some related concepts in coding theory before transitioning to their
lattice-based variants.

2 Coding Theory

One of the more widely studied topics in coding theory is error correcting codes where we
are interested in finding a (usually linear) message-encoding function f that transforms a
message ~x ∈ {0, 1}n into a codeword f(~x) ∈ {0, 1}m where m ≥ n such that, even after
flipping a “large” fraction of the bits in f(~x), we are still able to (efficiently) decode it and
get back ~x.

2.1 Linear Codes Background

Throughout this section, we focus on working in GF(2). We first recall some general defini-
tions from coding theory:

Definition 1 (Hamming distance). For any two vectors ~x, ~y ∈ {0, 1}m, their Hamming
distance hd(~x, ~y) is the number of positions i where ~xi 6= ~yi

Definition 2 (Hamming weight). For any vector ~x ∈ {0, 1}m, its Hamming weight hw(~x)
is the number of positions i where ~xi = 1
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Define A ∈ Fm×n
2 to be some binary matrix. We represent the linear encoding operation as

a function fA : Fn
2 → Fm

2 that accepts a message ~x ∈ {0, 1}n and outputs the corresponding
codeword fA(~x) = A~x = ~y ∈ {0, 1}m. A linear code C is simply the set of codewords
generated by matrix A which form an n-dimensional subspace in Fm

2 .
If the codeword ~y is error-free (no bits were flipped) and the matrix A is full column

rank (or, if n = m, it is invertible/non-singular) then we can uniquely and efficiently recover
~x using Gaussian elimination. However, this is not always the case when we add noise to ~y.
Consider, for example, the effect of flipping half the bits in ~y. This would result in a string
~z that we cannot decode because if we have another codeword ~y′ such that hd(~y, ~y′) = m,
then we cannot determine whether ~z is actually ~y or ~y′ without the noise.

Thus, it is important to determine the error tolerance of a code, which is given by the
maximum number of bits that we can flip in ~y while preserving the ability to decode it and
get back the correct ~x. In addition, we should also take into consideration the length of the
codewords m, as we generally prefer to have m to be on the same order of n (no excessive
redundancy) while still providing comparative error tolerance. Fortunately, the following
theorem whose proof we omit shows that this is possible.

Theorem 3. There exists a linear coding function fA : Fn → Fm with m = O(n) and error
tolerance Ω(m)

For now, we can set m = 10n and the error tolerance to be m/10. We say that a linear
coding function fA is decodable if for every pair of messages ~x 6= ~x′, their Hamming distance
is hd(A~x,A~x′) ≥ m/5. This guarantees that any codeword A~x can be decoded into some
unique ~x. Note that while the encoding procedure is efficient (simple matrix multiplication),
the decoding procedure might not necessarily be so, even though, information-theoretically,
there exists a way to correctly decode a codeword. We can efficiently generate a decodable
coding function using the following theorem.

Theorem 4. A randomly chosen A ∈ Fm×n
2 can be used to get a decodable linear coding

function fA with high probability.

Lastly, we define the code distance d of a linear code fA which is the minimum Hamming
distance between any two codewords. It can be easily shown that d is also equal to the
codeword with the minimum Hamming weight. That is:

d = min
~x6=~x′

hd(A~x,A~x′) = min
~x6=0

hw(A~x) (1)

Proof. A good simple exercise!

2.2 Problem Definitions

Here we discuss the problem definitions related to coding theory that are conjectured to be
computationally hard. While it is easy to find a decodable linear code (see Theorem 4),
we do not yet know of any efficient procedure to test that it is decodable. That is, finding
the code distance d is computationally hard. By Equation (1), finding the minimum weight
among all (non-zero) codewords is also equivalently hard.
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Definition 5 (Shortest vector problem). Given matrix A for some linear code fA with code
distance d, find ~y = A~x such that hw(~y) = d. That is, find the shortest non-zero vector in
{A~x | ~x ∈ {0, 1}n} ⊆ {0, 1}m

In contrast to the above problem of testing whether a linear code is decodable or not,
the following problem is based on the hardness of decoding a noisy codeword from a random
linear code.

Definition 6 (Decoding random linear codes). Given some random matrix A ∈ Fm×n
2 for

some linear code fA and a perturbed codeword ~y ← A~x + ~e where ~x ∈ {0, 1}n is chosen
uniformly at random and ~e ∈ {0, 1}m is a random error vector with weight at most m/10,
find ~x.

3 Lattice-based Cryptography

3.1 Lattices Background

Figure 1: An example of a lattice in R2

An m-dimensional lattice L is a discrete additive subgroup of Rm and is represented as
the set of all possible integer linear combinations of n linearly independent m-dimensional
(column) vectors ~a1, ...,~an. We call the matrix A = [~a1, ...,~an] the basis of lattice L and we
can define it more formally as follows:

L(A) = L(~a1, ...,~an) =

{
n∑

i=1

xi~ai : xi ∈ Z

}
= {A~x : ~x ∈ Zn}
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An example of 2-dimensional lattice is shown in Figure 1 where the explicitly drawn
arrows represent a basis for the lattice from which we can generate all other points. For
any vector ~y ∈ L, we usually refer to the length of a vector ||~y|| using the Euclidean norm
however other norms are also applicable.

3.2 Problem Definitions

We list here the definitions of the relevant lattice-based problem that are conjectured to
be computationally hard. These problems are the lattice analogue of the ones described in
Section 2.2.

Definition 7 (Shortest vector problem in lattices). Given a basis A for lattice L, find the
shortest non-zero vector in L(A).

The shortest vector problem (SVP) was one of the first lattice problems to have been used
as the basis for a public-key cryptosystem [AD97]. The exact version of SVP was proven
to be NP-hard [Ajt98] and the approximate version was shown to be computationally hard
even for constant approximation factors [Kho05].

Definition 8 (Learning with Errors). For uniformly random ~x ∈ Fn define O~x to be an
LWE oracle that upon request returns a tuple (~a, 〈~a, ~x〉+ ~e) where ~a ∈ Fn is a vector chosen
uniformly at random and e ∈ F is an error term chosen from some suitable distribution.
Given m samples from O~x, where m can be arbitrary, the LWE problem is to find ~x.

Unlike the two problems in Section 2.2, the two problems showcased here are known to
be related. Specifically, Regev [Reg05] shows a reduction from approximate-SVP to LWE.
Usually, the field we use on which to perform these computations is Z∗p and the error vector
is drawn from some suitable Gaussian distribution.
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