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1 Introduction

Encrypting large amounts of data when storing it on an untrusted server may not
always be enough to protect privacy. Although the data is encrypted, access patterns
can also leak sensitive information. For instance, suppose a client has a database
stored encrypted on a server, and is performing keyword searches on it. Islam et. Al.
have shown that an inference attack can identify approximately 80% of the queries
with minimal background knowledge just from the access patterns [4].

This is the main problem we address in this summary. We will discuss design
and application of protocols meant to hide the access pattern for a client to an
encrypted database. Consider a naive, but inefficient, approach: the client simply
accesses every record unit or block in the entire database on the server each time
any one of them needs to be accessed. Since the server sees the client accessing
each record every time, it cannot infer which record is actually of interest. This
is a very simple construction for what is called an Oblivious RAM, or ORAM. In
this construction, we can even hide if the operation is a read or write by having the
client overwrite each block with fresh encryptions each time.

Obviously, this is prohibitively expensive. In this summary we discuss more
efficient methods of achieving the same effect. In the next section, we formally
define the problem we are trying to solve. In section 3, we discuss a construction
that achieves polylogarithmic overhead on each access. Later, we talk about Onion
ORAM, which is a different construction that reduces the communication complexity
(but not computation) by offloading computation to the server using additively
homomorphic encryption. Finally in Section 5, we discuss an application of ORAM
in another area of cryptography — secure multiparty computation.



2 Definition of ORAM

Let us consider a large payload of data that is stored encrypted on a server. For
our purposes, we will assume that the data is divided up into blocks, and that there
is a total of N blocks stored on the server. Each block has a unique number in the
range [0, V). We will also assume that they are only accessed by means of either
read or write operations, which operate on a block granularity.

A sequence of such operations, y = (op1,...,0pn), is the access pattern that
we want to hide. An oblivious RAM protocol is one that translates each of these
operations into multiple read/write operations in a way that only the client knows,
producing a new access pattern ORAM(y). We say that an ORAM construction is
secure if two accesses ORAM(y) and ORAM(y') are computationally indistinguish-
able to anyone but the client.

3 Path ORAM

Path ORAM is a type of what is called a tree-based ORAM construction, first
developed by Shi et al. [8] for clients with small memory capacities. The general
layout of data in both the client and the server is shown in Figure 1. The paper
uses a standard notation in tree-structured ORAM, such as a block being a set of B
bits and a “bucket” storing some fixed amount Z of blocks within a data structure
on the server. A summary of this notation with specific definitions may be viewed
in Table 1.

For this protocol, the server-side storage is treated as a binary tree, where each
node is a “bucket” of Z blocks. Each block has been encrypted to hide them from
the server. If a bucket has less than Z blocks, extra dummy blocks are stored to
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Figure 1: Here is a graphic with a more visual representation of all the notation and
data structures involved in the algorithm



N Total # blocks outsourced to server
L Height of binary tree
B Block size (in bits)
Z Capacity of each bucket (in blocks)
Plx) path from leaf node x to the root

Plx. f) the bucket at level £ along the path P(x)
o client’s local stash

position client’s local position map

x := position[a] | block a is currently associated with leaf node x, i.e., block a
resides somewhere along P(2) or in the stash.

Table 1: Frequently used terms and notations

pad the bucket. If more than Z blocks are to be stored, they overflow into other
buckets or the client’s memory.

The client stores two data structures: the stash and the position map. During a
read /write access, the stash stores the blocks currently being analyzed by the client.
After each access, the stash may still hold blocks which overflowed the root bucket
on the server’s tree structure (happens rarely). The position map is a table which
maps every block address to a leaf node index. If the a-th entry of the position
map is z, it indicates that the a-th block is currently assigned to leaf x, and may
be found anywhere on P(x).

Initially, the client stash is empty, the server buckets contain random encryptions
of dummy blocks, and the client’s position map is filled with independent random
numbers corresponding to each leaf. Each block is placed in an appropriate bucket,

encrypted, on the server with a write/update command, starting the protocol for
Path ORAM.

3.1 Path ORAM Protocol

When the client interacts with the server, there are two possible actions it can take:
read or write. In both these cases, the client does not trust the server and needs to
ensure our goal of a secure interaction by hiding which block is being accessed.

Generally, this condition is satisfied by reading and decrypting into the stash all
values from a path containing the desired information (whether reading or writing,
the client needs to fetch it first), accessing the data as needed, and then creating
new encryptions for all blocks before writing it all back to the server. Thus when
the server sees the information, everything looks changed and some level of security
is achieved.



Specifically, the protocol entails the following four steps in the general case of
accessing block a:

1. Store the current position of block a in variable x before remapping this block
to a new random position. Remapping just means the position map is updated.

2. Read all blocks along P(z) into the client’s stash. Each block is decrypted
along the way.

3. At this point, if the original instruction was to write in a new block, update
the data stored within the clients stash

4. Write the blocks from the path back into the tree in the server from leaf to root
with a fresh encryption scheme so that all blocks appear new to the server.
While filling in each bucket, if a block a’ is stored along the path, then push
(aka. evict) it down to the lowest level bucket such that the bucket is along
P(z) and P(position[a’]). Any time a bucket is full, its parent is used. If the
root bucket is full, some blocks remain in the client stash.

3.1.1 Computation

Overall, the run time is O(log(IN)) per access. In practice most of the time is spent
encrypting and decrypting the blocks (O(log(N))). The remote server only needs
computation for when the client reads and writes requests.

3.1.2 Security Analysis

Throughout this process, the server sees sequences of requests for a block in a certain
position. Once the client reveals a desired block through this access, the block is
immediately remapped randomly, statistically independent of its previous position.
Following Bayes rule, a quick computation shows that the access pattern using this
protocol is computationally indistinguishable from a random sequence of bit strings.
This follows the previously stated security conditions.

3.1.3 Recursive Version

The initial point of Path ORAM was for a functional ORAM algorithm with small
client storage. The previously stated non-recursive function does, however, require
relatively large storage for both the stash and the position map. One possible option
for a client without much memory is instead of storing the position map on the client
it stores it on the server. For this process to maintain security, a smaller ORAM
protocol would be appropriate which would call and recurse through the position
map for the requested information. This is described in [8] and [9].



4 Onion ORAM

In this section we describe OnionORAM by Devadas et al. [3]. They build upon
the insight by [1] that the well-known Q(logn) lower bound on ORAM complexity
bounds only computation, not bandwidth. Thus, they use this insight to construct
an ORAM scheme with constant bandwidth overhead per access, using additively
homomorphic encryption (in particular, the Damgard-Jurik cryptosystem [2]) to do
server-side computation. They talk about why current fully homomorphic encryp-
tion schemes would not fit their purpose, citing abysmal performance and higher-
than-constant ciphertext expansion as reasons. In this section we describe their
algorithm, their protocol for semi-honest security, and the modifications necessary
for security against a fully malicious adversary. Finally, we sketch out their perfor-
mance bound proof.

The authors compare their work with prior work such as Path ORAM, Circuit
ORAM [10] etc. Their comparisons show that they achieved much lower bandwidth
requirement while having the same, or better, server-side storage and computation
requirements.

4.1 Notations

We reuse many of the same notations as in Path ORAM such as B, N, Z, L (Table 1).
Some of the other variables are:

e 27*: Bucket overflow probability, for some parameter A\. Recommended value
is around A = 80.

e A: Eviction frequency, where lower value means more frequent. The eviction
procedure is invoked once every A ORAM access.

We use P(l) and P(l,i) to denote buckets in a tree using the same convention as
in the Path ORAM section. We also introduce the notation d;; to mean a single bit
which is 1if i = j, 0 otherwise. For concreteness, the authors assume B = O(log® N)
and A =7 =0O(\).

4.2 ORAM Operations

Once again, like all other ORAM constructions, we have two basic operations: access
(which combines read and write) and eviction. This subsection describes how they
are achieved in Onion ORAM.

Just like Path ORAM in the previous section, this is a tree-based ORAM con-
struction. This means it shares a lot of the same principles. We still have each block



mapped to a random leaf node in the tree storage structure, where the mapping is
stored on the client side (or recursively, in a smaller ORAM). On each read, the
entire path from root to leaf is accessed to select the desired block, after which
the accessed node is written back to the root node, freshly encrypted and possibly
modified. Each node in the tree stores a bucket of Z blocks. Later, there is an evic-
tion process that happens once per A accesses, where blocks are propagated down
a path.

4.2.1 Reducing Bandwidth

The primary bandwidth reduction using additive encryption shows up in how they
read or write a block, both during access and eviction operations. Let’s say the
client wants to access a particular path with blocks By through B,,_1, (for n = ZL)
and the client is really interested in block B; for some i. In other ORAM structures,
the client would have to download them all just to hide B; is the block he wants.
But now, the client can send out encrypted selection bits E(d;;) for all j € [0,n),
and have the server return Z;:& B;E(d;5) = E(B;). Notice that we would normally
have encrypted data E(B;) to start with instead of just Bj, but then we would just
end up with E(E(B;)) = E%(B;) instead of E(B;). In general, each select adds an
extra layer of encryption, and then the client can decrypt them all. This layered
encryption scheme is the name Onion ORAM comes from.

Something we should note here is that only the actual data payload ever gets
homomorphically operated on: the associated encrypted metadata (block number i
and its assigned leaf label) is still processed separately by just sending them all to
the client as usual. Usually, after each time B; is read, the metadata for it would
be invalidated by setting its address to L.

When we want to write new data into a bucket (say, writing back to the root
node after a read), the client sends out freshly encrypted data as well as various
encrypted selection bits. At this point the server can perform selection between the
data received and the old block data for each block in the bucket.

4.2.2 Bounding Layers during Eviction

Eviction is the process that prevents the root node from overflowing, where blocks
are propagated down the tree towards the leaves. This process is slightly different
here compared to Path ORAM. We now run eviction only once every A accesses, as
opposed to every access. Moreover, the path selected for eviction is now chosen in
a predefined order, independently of the paths with accessed blocks. For eviction,
the path to evict is selected in reverse lexicographic order. Meaning, for the i-th
eviction, we select the path that goes from root to leaf number bit-reverse(i mod



2L—1).

When a path gets evicted, every block along that path gets written either to the
path leaf or one of the sibling nodes, depending on which leaf the path was assigned
to. This way, blocks written to the root gets slowly propagated towards the leaves.
More importantly, after this is done, the path is known to be completely empty
(other than the leaf) to the server as well. At this point, the server can simply reset
all the blocks to empty values, resetting the layers of encryption to 0. For the leaf,
the client fetches them after eviction and peels of the layers and writes it back to
achieve the same effect. This is how the Onion ORAM bounds the maximum layers
of encryption. The complete proof is in the paper, but we summarize the key idea
here. Because of the deterministic eviction order, there is a maximum number of
accesses that can occur before a given block is propagated to the leaf (or accessed
and rewritten to the root). This bounds the number of select operations it can be
involved in before its layers get reset to 1.

4.3 Security against Malicious Adversary

The authors end the paper with a discussion on using error correction codes to
achieve security against a fully malicious adversary. Each block is stored in some
error-correcting form such that small, malicious, changes to the block can be re-
verted. To detect large changes, they keep copies of a few chunks of each block on
the client side, which gets compared against the retrieved value on each fetch. If
they mismatch, the client aborts. Here, the server does not know which chunks are
stored redundantly on the client side. Thus, with all but negligible probability, they
ensure that the server cannot change any block sufficiently to corrupt data.

5 How to Garble RAM Programs

This section describes an application of ORAM in the area of secure two-party com-
putation (2PC), as described by Steve Lu and Rafail Ostrovsky [6]. The motivation
for 2PC is as follows: let’s say two parties have some private information, x and y,
that they want to use in some joint computation, and obtain just the output f(z,y).
2PC is a protocol that allows them to perform this without any trusted third party.
One of the leading constant-round protocols for performing 2PC is Yao’s protocol
of garbled circuits [11, 5]. Lu and Ostrovsky’s paper talks about a way to combine
ORAM with garbled circuits to achieve better asymptotic performance while keep-
ing the resulting protocol constant-round. Previous efforts 7] for combining these
two techniques always resulted in increased rounds of interactivity.



5.1 Overview of Yao’s Garbled Circuits

Consider 2PC as described above with two parties Gen and Fwal, each with their
own private inputs. The central concept in Yao’s garbled circuits protocol is what
is called a garbling scheme, and has three components: G, GI and GE. For any
given circuit C' and input z, the generating party Gen can perform G(C) — I' and
GI(z) — X. T" and X are called the garbled circuit and garbled input respectively.
The evaluating party Ewval can then receive I' and X from Gen to evaluate the
circuit as GE(I', X) — C(z) to obtain the output, without knowing anything about
the inputs.

5.1.1 Construction of a Garbled Circuit

Here we describe one possible way for G to construct the garbled circuit I" from C.
To construct a garbled circuit, G creates a new garbled truth table for each gate,
replacing plaintext inputs with encryption keys that map to encrypted outputs.
As an example consider Table 2 below, which shows a garbling for a single gate
that computes z = OR(z,y). In this table, each wire z,y,z has two associated
garbled keys K2 and K, for plaintext 0 and 1 respectively. These keys are used as
encryption keys for the output of subsequent gates.

Input Input Output Encrypted Output

K? Ky K? Encgy(Bncgo(K?))
K? K, K! EncKo(EncKl( K}l))
K} Ky K} Encg (Ench (K1)
K} K, K} Encgy(Encg (K7))

Table 2: Truth Table for Garbled Circuit z = OR(z,y)

These tables of encrypted outputs form I'; while the appropriate input keys for
a given value of x forms the garbled input X. Given these garbled inputs and tables
for each gate in the circuit, Fval can now evaluate the entire circuit gate by gate to
obtain the output C(z), and nothing else.

5.2 Motivating the Protocol Combination

Yao’s garbled circuits operates by accepting a circuit C' for the function f being
evaluated. However, most conventional programs are written for a RAM model,
that uses arrays and pointers. While all RAM programs can be converted into a
circuit, the overhead is rather large. The paper claims that an O(t) algorithm can
become O(#3logt) in the worst case, when converted into circuits. This can be large



in practice, although polynomial. Combining ORAM into the mix allows us to avoid
this blowup, and keep the overall 2PC protocol O(t).

5.2.1 Yao’s Garbled Circuits and Garbled RAM

Since we are attempting to achieve similar goals to Yao’s garbled circuits, most no-
tably non-interactivity, the high level overviews of the schemes have some parallels.
Each scheme is an algorithm that produces three programs G, GI, and GE as de-
scribed in Table 3. In this table C is a circuit, I is a garbled circuit, 7; is a program
that runs in time ¢, II; is the output garbled RAM program, z is the plaintext input
and X is the garbled input.

Garbled Circuits (Garbled RAM Purpose

G(C)— () G(m) — I Garble circuit C' or program 7

GI(z) —» X Gl(z) —» X Garble input

GEI',X)— C(x) GE(II;,;X)— m(x) Evaluate garbled circuit/program on X

Table 3: Components of a garbling scheme, for circuits and RAM

5.3 Constructing Garbled RAM

As indicated earlier, combining ORAM with garbled circuits allows us to achieve
a lower bounded runtime than when we do 2PC by garbling the program directly.
The main idea is to create a virtual machine and a CPU that executes instructions
for this virtual machine. This CPU will be emulated as a circuit. The CPU can
request RAM read/writes, so we create an ORAM client circuit that executes these
read/write operations. During evaluation we alternate between execution of the
garbled CPU circuit and the garbled ORAM client circuit. By garbling the ORAM
client we ensure that neither party can gain knowledge of the other party’s inputs
as part of the RAM read/write process. Going forward we refer to the ORAM client
circuit as Corapy and the CPU circuit as Copy.

5.3.1 Algorithm G for Garbling a Program

Given a program running in some fixed number of steps, G generates garbled circuits
GC(Coram) and GC(Cepy) for each step. The inputs and outputs of these circuits
are described in more detail in subsequent secions, but G must ensure that their
inputs and outputs use consistent garbled key encodings when these inputs and
outputs must be chained together.



5.3.2 Algorithm GI for Garbling Input

The algorithm for G1I is straightforward. Since the encodings were generated previ-
ously, simply map the input to the relevant time-labeled encodings.

5.3.3 Algorithm GFE for Evaluation

Given a garbled program II; that originally ran in t steps and a garbled input
X, store the beginning program state X1, inputs, and first read/write query V; in
memory. Then for each time step ¢ = 1...t evaluate the corresponding garbled circuit
GC(Coram) on V; to obtain a circuit GCorap that, when evaluated, executes the
actual ORAM read/write query. Execute this query to obtain a garbled output X;
and store it locally. Finally, evaluate GC(Ccopy) on input X; and state 3; to get
the new read/write query V;11 and the new state ;1 for the next time step. After
the last step, output the final garbled output Xy .

5.3.4 Constructing Copy

The circuit Copy takes the current CPU state 3 and the last memory contents read
X as inputs. When executed, this circuit outputs the new CPU state ¥’ and the
next read/write query V’. It is implemented by creating a circuit that computes
the result of all possible CPU operations and then uses a multiplexer to select the
desired one.

5.3.5 Constructing Corapm

The circuit Coran takes an ORAM read/write query V' as input and outputs a
garbled circuit GCporans that is used to execute the ORAM query. The GCoranm
output encodings for a given time step are constructed to match the input encodings
for the garbled circuit Copy at that time step.

5.4 Results

Through the construction presented here, oblivious RAM is used in a different way
than in the Path ORAM and Onion ORAM papers. The model of ORAM presented
in those papers involves a separate client and server where the client makes a single
request to the server for each read/write operation as shown in Figure 1 of the Path
ORAM section. Because such a request must be made for each RAM read/write
operation, algorithms making use of ORAM generally require interactivity. In this
case we have two parties, one of which is the generator and one of which is the
evaluator. The generator creates garbled circuits and sends them to the evaluator
for execution. When executing these circuits the evaluating party acts as both the
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ORAM client and server, and the construction ensures that this party is not able
to discover information about the other party’s input. This is because the ORAM
client has already been garbled. Since requests are not being sent between a distinct
client and server, no interactivity is required for this protocol.
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