
CS6501 Topics in Cryptography, Spring 2015

Project: Functional Controllable Homomorphic Encryption

Group Members: Ameer Mohammed (am8zv), Soheil Nemati (sn8fb)

1 Introduction

In this project, we define and propose a construction of a primitive called functional controllable
homomorphic encryption (FCHE) that shares some properties of functional encryption (FE) and
controllable homomorphic encryption (CHE). Ideally, such a hybrid encryption scheme should pos-
sess two primary properties. The first property is derived from CHE, which states that, given
some encryption c = Enc(m) of a message m and a privately-generated token for some function g,
one can invoke an evaluation procedure on c using the token for g to get Enc(g(m)). The second
property is derived from FE and builds upon any CHE ciphertext. That is, given any ciphertext
c = Enc(g(m)) (where g the identity function if this is a fresh CHE encryption), one can decrypt
this ciphertext using a secret key (token) representing some function f to finally get f(g(m)).

The building blocks for our primitive consist of controllable homomorphic encryption and a
variant of weak obfuscation called token-based obfuscation [5] where, given an obfuscated circuit,
an evaluator can only evaluate on an input if it has a secretly generated token for this input. For
the purposes of exposition, our resulting scheme is a restrictive form of FCHE, where the decryptor
must submit its ciphertext to the key generation entity in addition to the function f that it wants
to evaluate on the encrypted message m. We suspect that a true (non-restrictive) FCHE can be
constructed using FE and stronger forms of obfuscation in a fashion much similar to the techniques
described in [4], but we have yet to find a way that is also provably secure.

2 Motivation

To motivate the study of FCHE, we devised the following scenario in which such a primitive might
be useful. Consider an organization having several clients whose information is stored by a trusted
party (such as a system administrator) on a remote server. This server might have been leased by
the organization from an external agency in order to outsource data storage and computation and,
therefore, would not be completely trusted. Our goal in this system is twofold: first, we would
like the server to perform computations on the data while maintaining its secrecy, and second, we
would like the users to only be able to decipher the part of the encrypted data that belongs to
them.

The first requirement can be satisfied using any FHE scheme by sending this data in an en-
crypted format using a fully homomorphic encryption scheme to allow computation on the data by
the server. However, we would not want the server to manipulate the data in an undesirable way,
be it intentional or otherwise, so we would like to restrict the range of functions that the server
can use in the evaluation. To achieve this, we use controllable homomorphic encryption, introduced
in [3], so that an evaluator for function g is required to have a secret evaluation token EKg, which
is generated by the trusted party, to compute this function over the encrypted input.

The second requirement, which is selective decryption, can be achieved using functional en-
cryption. However, we cannot naively add a standalone FE scheme to encrypt the message in

1

conjunction with a homomorphic encryption scheme since the ciphertext of an FE scheme cannot
be normally manipulated by a HE scheme. Thus we should somehow endow an existing functional
encryption with homomorphic evaluation capabilities (or alternatively, start with a HE scheme and
modify it to allow for selective decryption).

Consequently, we define FCHE as a way to solve the above two requirements by encapsulating in
one scheme both the ability for the server to homomorphically evaluate a function g on a ciphertext
c = Enc(m) (given an evaluation token EKg for g) and then later for the user to decrypt it using a
secret token SKf to get f(g(m)).

Remark 2.1. A natural generalization of FCHE that one may also consider is the notion of
functional fully homomorphic encryption. However, we note that such a construction may be
infeasible to achieve under the combined security definitions of FE and FHE. That is also why
we resort to relaxing the homomorphic properties in order to realize a more reasonable security
definition.

3 Definitions

We list here some common definitions of primitives that we use throughout this work. Those
familiar with these primitives can skip this section. For the definition of controllable homomorphic
encryption (CHE), see Section 4.1. For the definition of functional controllable homomorphic
encryption (FCHE), see Section 5.

Definition 3.1 (Functional Encryption [2, 6]). For security parameter κ, a functional encryption
scheme FE for a family of deterministic functions F is a set of four algorithms defined as follows:

• FE. Setup(1κ): a PPT algorithm that outputs the master public key MPK and the master
secret key MSK. MPK is used for any and all encryptions of messages and MSK is used to
derive decryption keys for functions.

• FE.Keygen(MSK, f): a PPT algorithm that uses the master secret key MSK to derive a secret
key SKf for function f ∈ F .

• FE.Enc(MPK, x): a PPT algorithm that encrypts message x using MPK and outputs cipher-
text c.

• FE.Dec(SKf , c): a deterministic algorithm that uses secret key SKf on ciphertext c to get
message x′

Definition 3.2 (FE Correctness). A functional encryption scheme FE is said to be correct if for
all f ∈ F ,

Pr

 (MPK,MSK)← FE. Setup(1κ);
SKf ← FE.Keygen(MSK, f);
FE.Dec(SKf ,FE.Enc(MPK, x)) = f(x)

 = 1− negl(κ)

We define two notions of security for functional encryption: indistinguishability security where
the adversary asks for q keys and simulation-based security where the adversary asks for 1 key only.

2

Definition 3.3 (FE q-IND-CPA Security). A functional encryption scheme FE is said to be q-
IND-CPA secure if for all PPT adversaries A:

Pr[IND-CPAFE
A (1κ) = 1] ≤ 1

2
+ negl(κ)

where IND-CPAFE
A is shown in Figure 1, and for each of the q queries that A sends to the FE.Keygen

oracle in Step 2 and 6, it must hold that f(x0) = f(x1). An adaptive adversary is one that has
oracle access to the FE.Keygen oracle in both Steps 2 and 6 of Figure 1, whereas a non-adaptive
adversary might have only one or the other.

Experiment IND-CPAFE
A (1κ):

1. (MPK,MSK)← FE.Setup(1κ)
2. (x0, x1) ← AFE.Keygen(MSK,.)(MPK)

3. b
$←− {0, 1}

4. cb ← FE.Enc(MPK, xb)
5. b′ ← AFE.Keygen(MSK,.)(MPK, cb)
6. Output (b = b′)

Figure 1: The IND-CPAFE
A Experiment

Definition 3.4 (FE 1-SIM-Security). A functional encryption scheme FE is said to be 1-SIM-secure
if for all PPT adversaries A there exists a simulator such that:

{RealFEA (1κ)}κ ≈c {IdealFEA (1κ)}κ

where the experiments RealFEA (1κ) and IdealFEA (1κ) are shown in Figure 2.

Experiment RealFEA (1κ):
1. (MPK,MSK)← FE.Setup(1κ)
2. f ← A(MPK)
3. SKf ← FE.Keygen(MSK, f)
4. x← A(MPK, SKf)
5. c← FE.Enc(MPK, x)
6. α← A(MPK, cb)
7. Output (α, c)

Experiment IdealFEA (1κ):
1. (MPK,MSK)← FE. Setup(1κ)
2. f ← A(MPK)
3. SKf ← FE.Keygen(MSK, f)
4. x← A(MPK,SKf)
5. cSim ← Sim(MPK, SKf , f, f(x), 1|x|)
6. α← A(MPK, cSim)
7. Output (α, c)

Figure 2: The simulation-based experiments
Note that it was shown in [1] that q-SIM-security for FE schemes is impossible to achieve since,

in that case, the ciphertext size would grow linearly with q. Also, adaptive 1-SIM-security was
shown to be impossible to achieve by [2].

Functional encryption generalizes the concept of attribute-based encryption (ABE). In partic-
ular, the class of functions supported by ABE are those that output the message if a predicate on
the encrypted message’s attribute is satisfied and output ⊥ otherwise.

3

Definition 3.5 (Garbling Scheme). A garbling scheme Gb for a class of circuits C = {Cn}n∈N
consists of three PPT algorithms (Gb.Garble,Gb.Enc,Gb.Eval) defined as follows:

• Gb.Garble(1κ, C): a PPT algorithm takes as input the security parameter κ and circuit
C ∈ Cn then outputs a garbled circuit C̃ and secret encoding key sk

• Gb.Enc(sk, x): Takes as input the secret encoding key and the input x then outputs an
encoding c

• Gb.Eval(C̃, c): Takes a garbled circuit and corresponding encoding of the input and outputs
C̃(c)

Definition 3.6 (Garbling Scheme Correctness). A garbling scheme is said to be correct if the
following is satisfied for all n, circuits C ∈ Cn and inputs x ∈ {0, 1}n:

Pr[Gb.Eval(C̃,Gb.Enc(sk, x)) = C(x)] = 1− negl(κ)

where (sk, C̃)← Gb.Garble(C) and the probability is over the randomness of the three algorithms

Definition 3.7 (Garbling Scheme Security). A garbling scheme is said to be input- and circuit-
private if, for all PPT adversaries A, there exists a simulator SimGb such that the following holds:

|Pr[A(C, x, C̃, c) = 1]− Pr[A(C, x, C̃Sim, cSim = 1] = negl(κ)

where C, x are the circuit and input chosen byA, C̃ is output by Gb.Garble(1κ, C), c← Gb.Enc(sk, x),
and (C̃Sim, cSim)← SimGb(1κ, C(x), 1|C|, 1|x|). Intuitively, this means that the adversary should learn
nothing more than what it would learn in the simulated world since SimGb knows neither C nor x.

4 Summary of Related Work

In this section, we summarize the techniques and results of the papers from which we initiate our
study of FCHE. The first paper introduces the concept of controllable homomorphic encryption,
and the second is a construction of functional encryption from LWE-based primitives among other
applications, one of which we will make use of.

4.1 Controllable Homomorphic Encryption

We discuss here the main results of [3]. In the paper, the authors propose a new primitive which
is called controllable homomorphic encryption (CHE) that borrows some features from both fully
homomorphic encryption and functional encryption. By using CHE, one can (similarly to a FHE)
homomorphically evaluate a ciphertext Ct = Enc(m) and a circuit C therefore obtaining Enc(C(m))
but only if (similarly to functional encryption) a token for C has been received from the owner of
the secret key.

4.1.1 Definition

The main intuition behind their construction is that they change the circuit C to new circuit C ′

which is similar to the encryption of the circuit C. To understand this change, we need to see what
is the definition of CHE.

4

Definition 4.1. A controllable homomorphic encryption scheme (CHES) is a five-tuple CHE =
(CHE.Setup,CHE.Keygen,CHE.Enc,CHE.HEval,CHE.Dec) of efficient algorithms with the follow-
ing syntax:

• CHE. Setup(1κ, 1n): On input the security parameter κ and length parameter n, output public
and master secret keys (MPK,MSK).

• CHE.Keygen(MSK, C): On input the master secret key MSK and the description of an n−bit
input and n− bit output circuit C, outputs token EKC for circuit C.

• CHE.Enc(MPK, x): On input the public key MPK with and plaintext x ∈ {0, 1}n, outputs a
ciphertext Ct.

• CHE.HEval(MPK, Ct,EKC): On input the public key MPK, a ciphertext Ct for plaintext
x ∈ {0, 1}n and a token EKC for circuit C, outputs a string Ct of size independent of C.

• CHE.Dec(MSK, Ct): On input the master secret key MSK and a string Ct, outputs a string
x ∈ {0, 1}n.

In the definition we encrypt once by using CHE.Enc then one can use two functions CHE.HEval
and CHE.Dec to either evaluate or decrypt the ciphertext. The first idea for the construction we can
encrypt twice during the encryption phase (CHE.Enc). Therefore, when we want to use CHE.HEval
and CHE.Dec we decrypt both ciphertexts at the same time. The other idea is that when one wants
to evaluate a circuit C, we send the token of the other circuit C ′ which is C ′(x) = Enc(C(x)). Now
we want to formalize the notation of security. The authors defined a security game which is
equivalent to non-malleable chosen-plaintext attack NM-CPA security.

Definition 4.2 (CHE NM-CPA Security). A CHE is a NM-CPA secure if for every PPT adver-
sary A and all polynomially bounded n = n(κ) we have that the following two ensembles are
indistinguishable:

{CHE-NMCPA-GameCHE0,A (κ, n)} and {CHE-NMCPA-GameCHE1,A (κ, n)}

where the CHE-NMCPA-GameCHEb,A (κ, n) experiment is defined in the following sequence of steps
that the challenger takes:

1. Setup: Computes (MPK,MSK)← CHE. Setup(1κ, 1n) then runs A on input MPK.

2. Token Query: Replies to a token query for a circuit C by returning EKC ← CHE.Keygen(MSK, C).

3. ith Encryption Query: Replies to an encryption query (xi0, x
i
1) where xi0 = xi1 and |xi0| =

|xi1|, by returning Ct← CHE.Enc(MPK, xib).

4. Output of the Game. Let (j, Ct, C) be A’s output. If all the following conditions hold:

• A did not issue a token query for circuit C that coincides with C on xjb .

• C(xj0) = C(xj1).

• CHE.Dec(MSK, Ct) = C(xjb).

• Ct? is not a ciphertext obtained as a reply to an encryption query.

then the output is C(xjb). Otherwise the output of the game is ⊥.

5

4.1.2 CHE Construction

In the paper the authors show that we can get CHE from FE. First they defined a new circuit which is
a modified version of the original circuit. In the description of CHE, we let FE =(FE. Setup, FE.Enc,
FE.Keygen, FE.Eval) be an IND-CPA secure non-rerandomizable tag based FE4C. For a CHE with
n-bit plaintexts and security parameter κ, we use an FE for plaintexts of length n and an auxiliary
message of length κ + 2. In addition, we let F = {F (., .)} be a pseudorandom family of functions
F (., .) (the first argument is the seed), and let PKE = (Setup,Enc,Dec) be a public-key encryption
scheme. Finally, we define the new circuit C ′ as follows:

Cs,FE.pk(x, r, t, sk) =

FE.Enc(FE.pk, (C(x), 0κ,⊥, 0κ);F (r, C)) t = 0

Dec(sk, s) t = 1

⊥ t = ⊥

Given the elements described above, we can now describe the algorithm which they propose for
CHE.

Construction 4.3. CHE Algorithm:

• Algorithm CHE.Setup(1κ, 1n)

1. Run algorithm FE. Setup on input (1κ, 1n + 2κ+ 2) and obtain (FE.pk,FE.MSK)

2. Run algorithm Setup on input 1κ and obtain (pk, sk)

3. Set MPK = FE.pk and MSK = (FE.pk,FE.MSK, pk)

4. Return (MPK,MSK)

• Algorithm CHE.Keygen(MSK, C)

1. Set s = Enc(pk,FE.Enc(FE.pk, (0n, 0κ,⊥, 0κ)))

2. Set EKC = FE.Keygen(FE.MSK, Cs)

3. Return EKC

• Algorithm CHE.Enc(MPK, x)

1. Randomly select tag r ∈ {0, 1}κ

2. Run algorithm Setup on input 1κ and obtain (pk, sk)

3. Set Ct = FE.Enc(FE.pk, (x, r, 0, sk))

4. Return Ct

• Algorithm CHE.HEval(MPK, Ct,EKC): Outputs FE.Eval(FE.pk, Ct,EKC)

• Algorithm CHE.Dec(MSK, Ct)

1. Let EKID = FE.Keygen(FE.MSK, ID) where the circuit ID is defined in the following
way: ID(x1, x2, x3, x4) = x1

2. Return FE.Eval(FE.pk, Ct,EKID)

6

4.1.3 Security

In this section we sketch the proof of security of which there are five hybrids. First we are going to
define the first hybrid Hβ

0 then we mention the difference between the hybrids.

Hybrid Hβ
0 .

1. Setup: Set (pk, sk) ← Setup(1κ) and (FE.pk,FE.sk) ← FE.Setup(1κ, 1n+2κ+2). Then, ran-
domly pick r, r′ ← {0, 1}κ and run A on input CHE.pk = FE.pk.

2. Encryption query: When A issues an encryption query for messages (x0, x1), return Ct =
FE.Enc(FE.pk, (xβ, r, 0, sk)).

3. Token query: When A issues a token query for circuit C, proceed as follows: Pick random
z ∈ {0, 1}κ and set s = FE.Enc(FE.pk, (0n, 0κ,⊥, 0κ); z). Set s = Enc(pk, s) and EKC =
FE.Keygen(FE.sk, Cs) and return EKC .

Other hybrids are the same as hybrid 0 and we thus only show the difference between them in
the following table.

Hybrid Plaintext for Ct s in Tok

Hβ
0 (Mβ, r, 0, sk) FE.Enc(FE.Pk, (0n, 0κ,⊥, 0κ); z)

Hβ
1 (Mβ, r, 0, sk) FE.Enc(FE.Pk, (0n, 0κ,⊥, 0κ);F (r′, C))

Hβ
2 (Mβ, r, 0, sk) FE.Enc(FE.Pk, (C(Mβ), 0κ,⊥, 0κ);F (r, C))

Hβ
3 (Mβ, r

′, 1, sk′) FE.Enc(FE.Pk, (C(Mβ), 0κ,⊥, 0κ);F (r, C))

Hβ
4 (Mβ, r

′, 1, sk′) FE.Enc(FE.Pk, (C(Mβ), 0κ,⊥, 0κ);F (r, C))

4.2 Succinct Functional Encryption and Applications

We discuss here the main results of [5]. The primary contribution that the authors present is what
they call a “succinct” functional encryption scheme for generalized functions where succinctness
refers to having the size of the ciphertexts depend only on the depth of the circuit to be evaluated
during decryption and independent of the size of the circuit. From this result, the authors use
this construction as a building block to several applications including reusable garbled circuits and
token-based obfuscation. We first describe their functional encryption scheme and provide a sketch
of the proof, then briefly touch upon applications and how they are achieved using FE.

4.2.1 FE Construction

First we give an overview and the intuition behind the construction of this FE scheme then specify
the algorithms in detail. We start by recounting the similarities shared between FHE and FE. In
particular FHE has an algorithm (the evaluation algorithm) that changes a ciphertext into one
such that it decrypts to some function of the encrypted message, whilst FE has an algorithm (the
decryption algorithm) that decrypts any given ciphertext into a function f of the encrypted message
given a token (or secret key) associated with f . Thus, it would be natural to assume that we can
start with an FHE scheme to somehow get FE. That is, the sender would encrypt a message x
then send it over to the receiver who will evaluate the function f over the encrypted input to get a

ciphertext f̃(x) that decrypts to f(x). However, in order for the receiver to decrypt f̃(x), it would

7

need the FHE secret key, and supplying it this secret key would allow it to decrypt everything,
including the original ciphertext to get x!

Thus, the next step would be to give the receiver the ability to decrypt the evaluated cipher-
text without having to actually know the secret key. To achieve this, one could garble the FHE
decryption circuit (with the secret key hardcoded) and then provide this garbled circuit (with the
associated input labels) to the receiver. However, in order to preserve the circuit privacy property

provided by garbling, we should only give the receiver the input labels associated with f̃(x), which
is not known by the sender beforehand (since the receiver has yet to apply or decide upon what
f to apply). Giving all the input labels to the receiver compromises the security of the garbled
circuit and risks revealing the FHE secret key.

To rectify the previous issue, the last step would be to use a 2-outcome attribute-based encryp-
tion (ABE) scheme and provide the receiver with all of the garbled circuit’s input labels in encrypted
format as part of the ciphertext. After the receiver requests a secret ABE token SKf associated

with function f , it will be able to recover (only) the labels for f̃(x) by using ABE decryption on the
encrypted input labels, and then use these labels as input to the garbled FHE decryption circuit
to get f(x).

Given this high-level overview, we present the authors’ construction of the FE scheme. The
components of the scheme consists of a leveled FHE scheme (FHE.Setup, FHE.Enc, FHE.Eval,
FHE.Dec), a 2-outcome (leveled) ABE scheme (ABE2. Setup, ABE2.Keygen, ABE2.Enc, ABE2.Dec),
and a garbling scheme (Gb.Enc,Gb.Garble,Gb.Eval).

Construction 4.4. Let κ be the security parameter, and let λ = poly(κ) be the length of the
ciphertexts of the leveled FHE scheme.

• FE. Setup(1κ):

1. For all i ∈ [λ] get (fmpki, fmski)← ABE2.Setup(1κ)

2. Output MPK := (fmpk1, ..., fmpkλ) and MSK := (fmsk1, ..., fmskλ)

• FE.Keygen(MSK, f): Let f be an n-bit input function. Define FHE.Evalif : {0, 1}|hpk| ×
{0, 1}nλ → {0, 1} to be the Boolean function that runs the FHE evaluation algorithm over
public key hpk, function f , and n FHE ciphertexts hc1, ..., hcn (where each hci ∈ {0, 1}λ is
encrypted under hpk), then outputs the ith bit of the result. Then perform the following
steps:

1. For all i ∈ [λ] get fski ← ABE2.Keygen(MSK,FHE.Evalif)

2. Output SKf := (fsk1, ..., fskλ), the secret token for function f

• FE.Enc(MPK, x): Let x = (x1, ..., xn) be an n-bit message. Perform the following steps to
encrypt x:

1. (hpk, hsk)← FHE. Setup(1κ)

2. For all i ∈ [n], get hci ← FHE.Enc(hpk, xi). Let hc = (hc1, ..., hcn).

3. Garble the FHE decryption circuit to get
(
G, {L0

i , L
1
i }λi=1

)
← Gb.Garble(FHE.Dec(hsk, .))

where G is the garbled decryption circuit (with hsk hardcoded), and Lbi is the label for
input xi with value b ∈ {0, 1}

8

4. For all i ∈ [λ], encrypt (L0
i , L

1
i) with the 2-outcome ABE scheme with respect to attribute

(hpk, hc). That is, let ci ← ABE2.Enc(fpk, (hpk, hc), L0
i , L

1
i) for all i ∈ [λ]

5. Output ciphertext C = (G, c1, ..., cλ)

• FE.Dec(SKf , C): Parse C = (G, c1, ..., cλ) and SKf = (fsk1, ..., fskλ). Perform the following
steps to decrypt C:

1. For all i ∈ [λ], recover the labels of the garbled circuit. That is, get Lkii = ABE2.Dec(fski, ci),
where ki = FHE.Evalif (hpk, hc).

2. Evaluate the garbled circuit on the recovered labels to get Gb.Eval(G,Lk11 , ..., L
kλ
λ) =

FHE.Dec(hsk, k1, ..., kλ) = f(x)

4.2.2 Proof Sketch

Correctness. To show correctness, we should examine the result of the decryption algorithm
FE.Dec(SKf , C) for a given SKf and ciphertext C = FE.Enc(MPK, x) = (G, c1, ..., cλ) where ci =
ABE2.Enc(fpk, (hpk, hc), L0

i , L
1
i) for all i ∈ [λ]. In the first step of decryption, we invoke the

correctness of the 2-outcome ABE scheme and get the labels of FHE.Evalif (hpk, hc) because the

key SKf contains the tokens for evaluating predicates FHE.Evalif and, applying it on the ABE
ciphertexts with attribute (hpk, hc) = (hpk,FHE.Enc(hpk, x)), we decrypt to get:

ABE2.Dec(fski, ci) =

{
L0
i , if FHE.Evalif (hpk,FHE.Enc(hpk, x)) = 0

L1
i , if FHE.Evalif (hpk,FHE.Enc(hpk, x)) = 1

In the second step of the decryption algorithm, we use the recovered labels of FHE.Evalif (hpk, hc)
as input to the garbled circuit and get:

Gb.Eval(G,Lk11 , ..., L
kλ
λ)

(1)
= FHE.Dec(hsk, k1, ..., kλ)

(2)
= f(x)

where equality (1) follows from the correctness of garbled circuit evaluation and equality (2) follows
from the correctness of the FHE scheme.

Security. The authors use a simulation proof technique to prove that their scheme is simulation-
based fully (as opposed to selectively) secure in a non-adaptive single-key setting where the adver-
sary only asks for a single token before the challenge ciphertext is provided 1. To prove that, they
show the existence of a PPT simulator Sim (that does not know the the challenge message x to
encrypt) that outputs c̃ such that the real and ideal worlds are computationally indistinguishable.
Intuitively, the simulator will run a modified version of FE.Enc to hide the fact that it does not
know x. Given (MPK,SKf , f, f(x), 1κ), the simulator Sim works as follows:

1. Run (hpk, hsk)← FHE.Setup(1κ)

2. Using the FHE scheme, encrypt n zero-bits to get 0̃ := {FHE.Enc(hpk, 0)1, ...,FHE.Enc(hpk, 0)n}
1Note that there exists an impossibility result for the case of adaptive simulation-based secure functional encryption

[2]

9

3. Using the simulator for the garbling scheme SimGb, garble the FHE.Dec(hsk, .) circuit to get
(GSim, {Li,Sim}λi=1), the simulated garbled circuit and associated labels.

4. Encrypt the labels using the 2-outcome ABE scheme (where the same label is used for either
outcome) to get ci,Sim = ABE.Enc(fmpki, (hpk, 0̃), Li,Sim, Li,Sim) for all i ∈ [λ].

5. Output simulated ciphertext CSim = (GSim, c1,Sim, ..., cλ,Sim)

We sketch the proof at a high-level by going over the hybrids and stating the security property
used to preserve indistinguishability between any two consecutive hybrids. We start with the first
hybrid H0, which is the ideal experiment using the simulator shown above. The next hybrid H1 is
the same as H0 except that the simulator in Step 4 will use the ABE scheme to encrypt the labels
under the attribute hc = (hpk,FHE.Enc(hpk, x1), ...,FHE.Enc(hpk, xn)) instead of (hpk, 0̃). Given
that FHE is semantically secure, H0 and H1 are indistinguishable.

The next hybrid H2 is the same as H1 except that we replace the GSim simulated garbled circuit
of FHE.Dec(hsk, .) in the ciphertext with its actual garbling (i.e. using algorithm Gb.Garble) thus
getting (G, {L0

i , L
1
i }λi=1). Also, instead of using the ABE scheme to encrypt the simulated labels, we

now use the ABE scheme to encrypt Lkii twice where ki = FHE.Evalif (hpk, hc). That is, the ABE

ciphertexts are now ci,Sim = ABE.Enc(fmpki, (hpk, hc), L
ki
i , L

ki
i). Given that the garbled circuit

scheme is input-private and circuit-private, H1 and H2 are indistinguishable.
The last hybrid H3 is simply the real experiment where we use the actual scheme instead of

a simulator, and therefore, the ABE ciphertexts now encrypt both labels L0
i and L1

i . Given that
2-outcome ABE scheme is secure, H2 and H3 are indistinguishable.

4.2.3 Reusable Garbled Circuits

The first application of functional encryption that the authors discuss is reusable garbled circuits.
Standard garbling mechanisms achieve security (circuit/input privacy) assuming one-time evalua-
tion only, which results in high overhead whenever we want a securely evaluate a specific circuit
over multiple different encoded inputs, since we would need to re-garble the circuit every time.
The authors use a fully-secure single-key succinct functional encryption scheme to reach a solu-
tion whereby a garbled circuit can be evaluated over many encoded inputs without the need for
re-garbling, and at the same time, preserving circuit and input privacy.

Using a functional encryption scheme (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) and public-key
encryption scheme with public key pk and secret key sk, the authors describe a way to get a reusable
garbled circuit scheme. To garble a circuit C, we use the input-hiding property of FE to hide the
circuit as well, and the way to do that is to run FE.Keygen on a circuit UE (where E is the
encryption of C under pk) that takes as input sk and x, decrypts E to get C then runs C on x.
Thus, encoding an input x for the circuit is as simple as encrypting (sk, x) using the FE scheme,
and to evaluate a circuit (which can be performed multiple times on the same garbled circuit), we
compute FE.Dec on the generated token for UE and the encoded input (sk, x).

4.2.4 Token-based Obfuscation

Another application is token-based obfuscation, which can be seen as an reformulation of reusable
garbled circuits. Specifically, reusable garbled circuits can be modelled as a form of “private-key”
obfuscation in which one can evaluate a given garbled (read obfuscated) circuit over arbitrarily

10

many inputs only if one has the encoding of said inputs, and these encoded inputs can only be
generated by the holder of the private-key. This stands in contrast to the notion of traditional
notions of obfuscation, where one is given an obfuscated circuit and anyone could publicly evaluate
this circuit over any input of its choice. In fact, given the impossibility result regarding virtual
black-box obfuscation, the private encoding of inputs is indeed necessary to achieve simulation-
based security in this model.

From reusable garbled circuits, it is straightforward to see how one can also get token-based
obfuscation. To obfuscate a circuit C, we garble C first to get C̃, then output as the obfuscation
of C a new circuit O

C̃
that has C̃ hardcoded and accepts a token tkx for input x, so that it can

evaluate C̃(tkx) = C(x). Token generation for inputs to obfuscated circuits is done by calling the
encoding algorithm of the garbling mechanism. Intuitively, a token-based obfuscation scheme is
said to be secure if there exists a simulator that can generate an obfuscated circuit and related
encodings without knowing the adversary’s chosen C or x.

5 Functional Controllable HE

In this section, give our definition of the FCHE primitive and show one way to construct it.

Definition 5.1 (Functional Controllable Homomorphic Encryption Scheme). Let κ be the security
parameter and (F ,G) be a pair of function classes represented as circuits. A functional controllable
homomorphic encryption (FCHE) scheme for (F ,G) is a tuple of six algorithms (FCHE.Setup,
FCHE.Keygen, FCHE.Eval, FCHE.EvalKeygen, FCHE.Enc, FCHE.Dec) defined as follows:

• FCHE. Setup(1κ): a PPT algorithm that takes as input the security parameter 1κ then gen-
erates and outputs a key pair (MPK,MSK), where MPK is the master public key and MSK is
the master secret key.

• FCHE.Keygen(MSK, f): a PPT algorithm that takes as input the master secret key MSK and
a function f ∈ F , then outputs a secret decryption token SKf for function f .

• FCHE.EvalKeygen(MSK, g): a PPT algorithm that takes as input the master secret key MSK
and a function g ∈ G, then outputs a secret evaluation token EKg for function g.

• FCHE.Enc(MPK, x): a PPT algorithm that takes as input the master public key MPK and a
message x ∈ {0, 1}n then outputs a corresponding ciphertext c

• FCHE.Eval(EKg, c): given an evaluation token for some single-input function g, this PPT
algorithm evaluates g on encrypted input c where, c = FHE.Enc(hpk, x).

• FCHE.Dec(SKf , c): a PPT algorithm that takes as input a decryption token SKf and a
ciphertext c then outputs the corresponding message m′

We will mainly focus on a slightly different form of this primitive which we call restrictive FCHE
that has the same syntax as normal FCHE but differs in the FCHE.Keygen algorithm, where it also
requires as input the ciphertext that is to be decrypted with function f .

11

Correctness: For sufficiently large security parameter κ and polynomial n = n(κ), for all (f, g) ∈
(F ,G) and inputs x ∈ {0, 1}n, the following should hold:

Pr[FCHE.Dec(SKf , c) = f(g(x))] ≥ 1− negl(n)

where the evaluated ciphertext is given by c← FCHE.Eval(EKg, c) for c← FCHE.Enc(MPK, x), the
evaluation key is EKg ← FCHE.EvalKeygen(MSK, g), the decryption key is SKf ← FCHE.Keygen(MSK, f),
and the master keys are generated as (MSK,MPK)← FCHE.Setup(1κ). The probability is over the
randomness of the algorithms used in the experiment.

Definition 5.2 (Restricted FCHE IND-CPA Security). An restricted FCHE scheme is said to be
IND-CPA secure if for all PPT adversaries A:

Pr[IND-CPAFCHE
A (1κ) = 1] ≤ 1

2
+ negl(κ)

where IND-FCHEFCHE
A is shown in Figure 3, and for each of the queries that A sends to the

FCHE.Keygen and FCHE.EvalKeygen oracle in Step 2, 5, and 6, it must hold that f(g(x0)) =
f(g(x1)) for the requested functions f, g where g as the identity function is implicitly included.

Experiment IND-CPAFCHE
A (1κ):

1. (MPK,MSK)← FCHE.Setup(1κ)
2. (x0, x1) ← AFCHE.EvalKeygen(MSK,.)(MPK)

3. b
$←− {0, 1}

4. cb ← FCHE.Enc(MPK, xb)
5. (f, c′)← AFCHE.EvalKeygen(MSK,.)(MPK, cb)
6. SKf,c′ ← FCHE.Keygen(MSK, f, c′)
7. b′ ← A(MPK, SKf,c′)
8. Output (b = b′)

Figure 3: The IND-CPAFCHE
A Experiment

5.1 Restricted FCHE from CHE and Token-based Obfuscation

We now proceed to present our construction. The intuition behind the scheme is reminiscent of
the functional encryption scheme in [4]. In particular, we use a CHE scheme as our foundation to
encrypt new messages (thus providing input-privacy) and control evaluation, and use an obfuscation
mechanism during decryption to apply function f after decrypting the evaluated ciphertexts with
the CHE secret key. The obfuscation mechanism ensures circuit-privacy and thus preserves the
secrecy of the secret key of the CHE scheme.

Construction 5.3. Let κ be the security parameter. Let CHE = (CHE.Setup, CHE.Keygen,
CHE.Enc, CHE.HEval, CHE.Dec) be a controllable homomorphic encryption scheme, and tO =
(tO.Obfuscate, tO.Enc) be a token-based obfuscation scheme.

• FCHE. Setup(1κ):

12

1. Run (csk, cpk)← CHE.Setup(1κ)

2. Let Ucsk be the circuit that takes a function f , a CHE ciphertext c then outputs
f(CHE.Dec(csk, c)). Now, run (osk, Ũcsk)← tO.Obfuscate(1κ)

3. Output MSK = (osk, csk) and MPK = (Ũcsk, cpk)

• FCHE.EvalKeygen(MSK, g):

1. Run EKg ← CHE.Keygen(csk, g)

2. Output EKg

• FCHE.Enc(MPK, x):

1. Run c← CHE.Enc(cpk, x)

2. Output c

• FCHE.Eval(EKg, c):

1. Run c′ ← CHE.HEval(cpk,EKg, c)

2. Output c′

• FCHE.Keygen(MSK, f, c): For f ∈ F , do the following:

1. Run SKf,c = tO.Enc((f, c))

2. Output the encoded inputs SKf,c

• FCHE.Dec(SKf,c, c):

1. Run x′ ← Ũcsk(SKf,c)

2. Output x′

Given the above scheme, we show that it satisfies both the correctness and security properties
of the restricted version of FCHE.

Correctness. To show correctness, we should examine the result of the decryption algorithm
FE.Dec(SKf,c, c) for a given SKf,c and ciphertext c← FCHE.Eval(EKg, c

′) where c′ = CHE.Enc(cpk, x)
and EKg is the evaluation key for function g. First, by the correctness of the token-based obfusca-

tion scheme, we get that FCHE.Dec(SKf,c, c) = Ũ(SKf,c) = U(f, c). Since U first decrypts c using
the CHE decryption algorithm and the key csk, by the correctness of CHE scheme, we will get g(x)
. After applying the function f on this result, we get the desired correct output f(g(x)).

Security. We prove indistinguishability security (IND-CPA) of the restrictive FCHE in the single-
key non-adaptive setting where the adversary only asks for a single decryption token after the
challenge ciphertext is provided. In our proof, we will use the simulator for the underlying token-
obfuscation scheme SimtO and the fact that the CHE scheme is IND-CPA secure.

Starting with the first hybrid H0 where x0 is encrypted, we move to the second hybrid H1 which
is exactly the same as H0 except that the actual tokens SKf , which are obfuscated programs, will be
replaced with simulated obfuscations (using SimtO). Thus, if there exists an adversary A that could

13

distinguish between H0 and H1, we can construct an adversary B the breaks the simulation-based
security of tO as follows: B starts by creating the keys for the CHE scheme and building the circuit
Ucsk. It then submits Ucsk to the tO challenger, which will obfuscate the circuit (real or simulated)
and return Ũcsk. B will then run A, providing it with the master public key MPK = (cpk, Ũcsk).
After A provides B with the chosen messages (and any requests for evaluation tokens), A will
choose to encrypt one of the messages at random. Next, the request for decryption token will be
forwarded to the challenger to get SKf,c. Finally, B outputs whatever A outputs.

The next hybrid H2 is exactly the same as H1 except that now x1 will be encrypted. If there
exists an adversary A that could distinguish between H2 and H1 then we can construct an adversary
B the breaks the IND-CPA security of the CHE as follows: B starts by forwarding the simulated
circuit Ucsk and cpk to A. Any requests by A for evaluation tokens will be forwarded to the
challenger. When A submits its chosen messages, they will be forwarded to the challenger, which
will return the challenge ciphertext. Next, any requests to for decryption tokens will be simulated
by B using SimtO.Enc((f, c)). Finally, B outputs whatever A outputs. The last hybrid H3 is the
same as H2 except now we revert back to the real obfuscated circuit instead of the simulated one.
The proof for that proceeds identically to the one between H0 and H1.

6 Future Work

We intend to further investigate the minimal assumptions needed to get unrestricted FCHE, and
explore the possibility that FCHE itself might provide us with some level of obfuscation. Further-
more, we would like to extend the existing scheme to work with multiple keys that can be composed
during evaluation. This raises the question of whether adding further restrictions on the adversary
(e.g. f(g1(g2(x1))) must be equal to f(g1(g2(x2))) for all f and g1, g2) can be detrimental to the
functionality of the scheme, and if so, to what extent. This may also lead us to a notion of security
that is based on non-falsifiable assumptions especially if the challenger in the security game needs to
verify that the adversary is not cheating by checking that, for all possible compositions of requested
keys, the condition imposed on the adversary was not violated.

14

References

[1] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional encryption: New
perspectives and lower bounds,” Cryptology ePrint Archive, Report 2012/468, 2012, http:
//eprint.iacr.org/.

[2] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and challenges,”
in Theory of Cryptography, ser. Lecture Notes in Computer Science, Y. Ishai, Ed.
Springer Berlin Heidelberg, 201ONeill20101, vol. 6597, pp. 253–273. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-19571-6 16.

[3] Y. Desmedt, V. Iovino, G. Persiano, and I. Visconti, “Controlled homomorphic encryption:
Definition and construction,” Cryptology ePrint Archive, Report 2014/989, 2014, http://eprint.
iacr.org/.

[4] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistin-
guishability obfuscation and functional encryption for all circuits,” Cryptology ePrint Archive,
Report 2013/451, 2013, http://eprint.iacr.org/.

[5] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich, “Reusable garbled
circuits and succinct functional encryption,” in Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, ser. STOC ’13. New York, NY, USA: ACM, 2013, pp.
555–564. [Online]. Available: http://doi.acm.org/10.1145/2488608.2488678.

[6] A. O’Neill, “Definitional issues in functional encryption,” Cryptology ePrint Archive, Report
2010/556, 2010, http://eprint.iacr.org/.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://doi.acm.org/10.1145/2488608.2488678
http://eprint.iacr.org/

	Introduction
	Motivation
	Definitions
	Summary of Related Work
	Controllable Homomorphic Encryption
	Definition
	CHE Construction
	Security

	Succinct Functional Encryption and Applications
	FE Construction
	Proof Sketch
	Reusable Garbled Circuits
	Token-based Obfuscation

	Functional Controllable HE
	Restricted FCHE from CHE and Token-based Obfuscation

	Future Work
	Bibliography

