
Homomorphic Signature Schemes

Collin Berman, Dasith Gunawardhana, Sumit Narain

April 13, 2015

1 Introduction

The idea of a digital signature is a natural notion that closely parallels
written signatures. In particular we wish to compute a signature of some
data so that the signature can be publicly verified. In addition, we would
like signatures to be unforgeable so that a signer cannot deny the validity
of their signature [6].

For example, suppose someone wishes to send an electronic message and
add their signature to show that the message is really from them. Then they
can use their private key to generate a signature and send the signature along
with their message. The recipient can then use the sender’s public key to
verify the authenticity of the signature.

1.1 Signatures from RSA

Recall the public key cryptosystem RSA [6]. Given a public key (e, n), we
encrypt message M by

C ≡ Enc(M) ≡M e (mod n)

and decrypt using private key (d, n) by

Dec(C) ≡ Cd (mod n)

where e · d ≡ 1 (mod (p− 1) · (q − 1)) for n = p · q.
We can use this same cryptosystem to form a signature scheme. Correct-

ness of RSA tells us that Dec(Enc(M)) = M for a message M . However,
we can also compute in the opposite order, where we still find that for a
message M , Enc(Dec(M)) = M .

This gives an immediate way to compute a signature. A signer can use
their private key on a message to compute a signature σ = Dec(M). Then

1

anyone can publicly verify whether Enc(σ)
?
= M . It is computationally

infeasible for an attacker to come up with a signature for a given message,
because deriving a signature is the same as decrypting a ciphertext, which
is hard without the private key.

1.2 Homomorphic Signatures

With recent advances in cloud computing, it has become common to out-
source computation to more powerful hosts. In this situation we can consider
two different forms of security we may want. If the data we wish to com-
pute over is confidential, we would want to provide encrypted data to the
computing body. If the server is then able to compute over the encrypted
data, we are using a homomorphic encryption scheme.

We may also consider the case where we do not care whether the server
can read our data, but we wish to verify whether the computations the
server has performed are correct. A natural way to do this is to extend
signature schemes to also be homomorphic. Suppose we have produced
signatures for some data x1, . . . , xn, and we want the server to compute
y = g(x1, . . . , xn) for some function g. Then we can verify the result of the
computation if the server can also provide us with a signature σg,y which
certifies that y is indeed the result of computing g(x1, . . . , xn). If we are able
to outsource the computation of any function g, we say the signature scheme
is fully homomorphic. Finding an algorithm to compute such signatures is
the subject of this paper.

Note that RSA is weakly homomorphic with respect to multiplication:
let σ1, σ2 be signatures for x1, x2, that is,x‘’ σi ≡ xei mod n. Then σ1 ·σ2 ≡
xe1 · xe2 ≡ (x1 · x2)e is a valid signature for x1 · x2.

1.3 Security of Signatures Schemes

As with written signatures, we want digital signatures to be unforgeable.
We define an existential forgery to be the creation of a valid signature σ for
a message M , where the legitimate signer has not produced such a signature.
If no efficient adversary can produce such a signature, the signature scheme
is secure against existential forgery.

This notion of forgery will obviously not work for homomorphic signature
schemes; signatures need to be publicly computable for functions of signed
data. Instead, we require that no efficient adversary can compute a valid
signature for a message y that cannot be computed from any x that has
been signed. That is, if x1, . . . , xn have been legitimately signed under a

2

scheme homomorphic with respect to a binary operation �, an adversary
should not be able to compute a signature for some y 6∈ span�(x1, . . . , xn).

Even this notion of security will not work for fully homomorphic signa-
tures, as any y can be computed from inputs x1, . . . , xn. Instead we say the
scheme is secure if no efficient adversary can compute a valid signature σg,y
where y 6= g(x1, . . . , xn). This is the essential property of security we need
for verifying the result of outsourced computation.

1.4 Paper Overview

In the rest of this paper we present three homomorphic signature schemes.
In Section 2, we give a construction of a weakly homomorphic scheme over a
redaction operation. Given a signature of some message, signature holders
will be able to compute a valid signature of a redaction of the message. In
Sections 3 and 4, we give two constructions of fully homomorphic signature
schemes. These constructions are highly similar, but are extended in dif-
ferent directions. The construction in Section 3 gives a second construction
using the random oracle model resulting in smaller public parameters, while
the construction in Section 4 allows separation of data into multiple data
sets by tagging.

2 Homomorphic Signature Scheme

The paper of Homomorphic Signature Schemes by Robert Johnson, David
Molnar, Dawn Song, and David Wagner [5] focuses on the idea that signature
holders are used to create a signature on a sub-message of the original mes-
sage using unions and subsets. The author goes into the idea of redactable
signatures and possible solutions to this problem, and uses the hash and
sign paradigm to verify the legitimacy of the redaction.

In essence, we are interested in the signature scheme for a message that
is authenticated. Then we also want to see if a subset or redaction of that
message can also be authenticated. For example, let’s assume there is a
message M with several strings x = x1x2...xn, where each xi represents a
letter or word in the message. This string x was authenticated or signed
by a person, say Alice. Alice sends the string and it’s signature to another
party. Alice wants to show the message to another party, say Bob, but Bob
is not authorized to view certain parts of the string, say x1x2. Then Alice
shows Bob the updated string, xupdated = **x3x4...xn. The stars represent
the location of the removed word or letter from the message. What if Bob
wants to verify the authenticity of the message xupdated? Then Alice can

3

produce a valid signature for the xupdated and pass that to Bob. From the
new signature from xupdated, Bob should be able to verify that the message
is a subset of the string signed by the authority who is Alice.

2.1 Redactable Signatures Basics and Obvious Scheme

The issue that redactable signatures tries to solve is that a censor can delete
certain substrings of a signed document without destroying the ability of the
recipient to examine the redacted (the text with censors on the parts that
are removed) document. The censors tend to be a symbol which represents
the where the hidden text is placed. In this article, the author used the
pound symbol to signify that characters have been hidden. The author
mentioned several applications such as proxy cryptography or incremental
cryptography.

The importance of showing the positions where the element has been
deleted is that an authenticated message could have its meaning changed
when some elements are deleted. Imagine a message Alice sends to Bob: Our
co-worker, Alex, spends 60 hours a week trying to find ways to add value to
our bottom line, and never have I known him to shirk his duties. Alex is a
true asset to our company, and I cannot think of one person better suited
to your requirements [5]. If Bob got that message and removed some of the
wording without the removed words leaving any traces, the updated message
could become: Alex spends 60 hours a week trying to find ways to shirk his
duties, and I can think of one person better suited to your requirements.
This message would also be authenticated, but the entire meaning of the
message has been changed. The way to prevent this would be to put censors
where the deleted portions have been: Alex spends 60 hours a week trying
to find ways to ************ shirk his duties *******, and I can*** think
of one person better suited to your requirements (the * are meant to block
out each letter in the original message sent by Alice).

The simplified or obvious way to solve this problem is to have a fixed
signature scheme Sig0. There is no special homomorphic properties from
Sig0. We would sign a character of message x at index i and generate a key
value pair (s, v) for the index and message. The structure for this scheme
would be

Sig(x) = 〈Sig0(n, v), s(1, x1), ..., s(n, xn)〉
How this works is that every time that a person wants to censor an element.
The index of the character is chosen and then the whole key-value pair is
removed from the set. This is easily verified since one can check all the
indexes which represents the values in the message. By removing the key

4

value pair, the contents of that index cannot be revealed but it is easy to
tell which portions have been redacted.

Although this scheme is simple and quite easy to understand, the issue
is that the Sig(x) is very long. If each s in the Sig(x) will produce m-bit
signatures, this would result in a construction of signatures which would be
m ∗ n+O(1) for the length. This would make it difficult to compare to the
length of the message which would be n; so the next step is to find a scheme
which has much shorter signatures.

2.2 Author’s Scheme Construction

The author creates a tree structure for the signature scheme. In this portion,
the author uses the hash and sign paradigm along the tree to allow the person
to correctly verify the Sig(x). A k value will be generated at random and
then create a tree structure which is used to associate each k value as a
key to each node. Each node is defined as the recursive relation which is
completed when the all the values in the message are associated with a key
value. Once all the words or characters in the tree are corresponding to k
values, then a hash value for each leaf will be calculated by v = H(0, kl, xl).
This will be the individual hash value for each leaf. Then to calculate the
total hash value, the graph will begin at the leaves and recurse to the node
by a summation hash function vnode = H(1, vnodeLeft, vnodeRight). If there
is a missing child then we just remove that portion from the summation
hash function: vnode = H(1, vnodeRight) or vnode = H(1, vleft). Finally after
the summation hash function is complete, then one would calculate the
Sig(x) since we are given the k value as well as the summation hash value:
Sig(x) = 〈k, Sig0(vnode)〉. The verification for the Sig(x) is easy since we just
compare the signature of the original message with the Sig0(vnode). This
portion did not involve redaction, but the redaction portion is not difficult
to integrate in this tree structure.

The next part would describe how to remove a symbol and still maintain
secrecy of the message. If we keep the same tree structure and simply remove
the character or word, that would make revealing vl = H(0, kl, xl) a security
risk since we have given kroot which can determine all the values of k, and
then the person can iterate through all the possible values of xl and learn
the value of the erased symbol. To keep the data hidden, when we redact
a character or word, we also redact the kroot as well as the ancestor’s keys
for the specific word or character. To access the sibling or the removed
parent’s child, we will reveal the sibling. This information will be enough
to calculate the signature as well as maintaining secrecy. The algorithm of

5

removing a leaf includes removing the root node key, the the ancestors’ keys,
and revealing the sibling. If we remove the sibling, then we could replace the
vsibling with the vparent. This would give the same result since the vparent will
no longer have any children and it would make the compact the signature.

2.3 Conclusion and Security

The security measures that this scheme has is secure against random forg-
eries and existential forgeries. By random forgeries, it means that the ad-
versary cannot create valid signatures for random messages. The existential
forgery is that the adversary cannot form a signature for an unredacted
message if all they have are signatures for redactions of the message.

Homomorphic signatures present interesting capabilities for hiding in-
formation from people. The authors have presented a novel way to create a
signature on redacted sub-message of the original message.

3 Leveled Fully Homomorphic Signatures

We now present a fully homomorphic signature scheme due to Daniel Wichs
[7]. This scheme is achieved using a construction called homomorphic trap-
door functions as a building block. The security of these functions and the
signature scheme as a whole follows from the hardness of standard lattice
problems.

Just as evaluating functions over encrypted data increases noise values
in fully homomorphic encryption, so does evaluating circuits over signa-
tures. Because however the signature scheme presented here does not have
the bootstrapping renormalization functionality required to reduce noise, we
cannot perform unbounded computation over signatures. Instead the maxi-
mum depth of a circuit is bounded, resulting in a leveled fully homomorphic
signature scheme.

After constructing homomorphic trapdoor functions, the resulting signa-
ture scheme is shown to have different properties depending on the model of
computation. In the standard model, the scheme requires public parameters
larger than the total size of all signed data in order to be secure. Although
this would make the scheme infeasible to use in practice, the scheme achieved
in the random oracle model has short public parameters.

6

3.1 Background on Lattice Problems

The small integer solution (SIS) problem asks for a vector orthogonal (mod
some integer) to a randomly chosen matrix. Formally, given integer param-
eters n,m, q, β, we look for a vector u ∈ Zm

q such that A · u = 0 given a
uniformly random matrix A ∈ Zn×n

q . We further require u to be a nontrivial
solution, that is, u 6= 0, and to be small, that is, ||u|| ≤ β. The norm used
in this paper is

||u||∞ = max
1≤i≤m

ui

but any norm || · || will work.
Note that the matrix A is chosen uniformly randomly. While some

lattice problems are hard in the worst case, SIS is hard in the average case
[1]. The hardness of SIS is also implied by the hardness of Learning with
Errors (LWE) in lattices.

A property of SIS that makes it attractive for trapdoor functions is that
although solving SIS for a random matrix is hard, there is an algorithm to
sample a random matrix A along with a trapdoor for A that makes SIS
easy. Additionally, the trapdoor functions constructed here rely on the fact
that there are also some matrices G for which SIS is easy to solve, even
without a trapdoor.

Finally we remark that solving SIS for matrix A is equivalent to finding a
short matrix U such that A ·U = V for a given matrix V [3]. This problem
of ”inverting” A is the problem that will actually be used in constructing
the signature scheme.

3.2 Homomorphic Trapdoor Functions (HTDF)

To construct the homomorphic signature scheme, HTDFs are introduced as
a building block. An HTDF is a function fpk,x(·) parameterized by a public
key pk and a data input x. The function can be inverted using a trapdoor
secret key sk (but not without the trapdoor) to find some input u such that
fpk,x(u) = v for some given v (note that the function need not be one-to-
one, so there may be multiple such inputs u that work). The function is also
homomorphic in that given values

ui, xi, vi = fpk,xi
(ui), 1 ≤ i ≤ N

and a function g : {0, 1}N → {0, 1}, an input u∗ and output v∗ can be
publicly computed so that

fpk,g(x1,...,xN)(u
∗) = v∗.

7

To construct an HTDF, we first select a public/private key pair by sampling
a random matrix A along with its SIS trapdoor. A is then used to compute
the HTDF over an input matrix U by

fA,x(U) = A ·U− x ·G = V

where G is a matrix for which SIS is easy without a trapdoor. Then this
function can be inverted by using the trapdoor to find a short matrix U
such that A ·U = V + x ·G.

Homomorphic addition is easy to perform with U∗ = U1 + U2 and
V∗ = V1 + V2. Then

fA,x1+x2(U1 + U2) = A · (U1 + U2)− (x1 + x2) ·G
= (A ·U1 − x1 ·G) + (A ·U2 − x2 ·G)

= fA,x1(U1) + fA,x2(U2) = V1 + V2.

However, multiplication is harder. We begin by finding a short matrix
R such that G ·R = −V1 by exploiting the special structure of G. Then
set V∗ = V1 + V2 and U∗ = x2 ·U1 + U2 ·R. It can be verified that

fA,x1·x2(U∗) = V∗

so the HTDF is fully homomorphic.

3.3 Signatures from HTDFs

A homomorphic signature scheme requires public parameters, a way to
sign data and verify signatures, and a way to compute a circuit over a
data/signature pair. These components are built out of an HTDF with
public/secret key pair (pk, sk). The public parameters used in the signature
scheme consist of N random outputs of the HTDF, (v1, . . . , vN) where N is
a bound on the number of data points that has been set beforehand.

To sign data (x1, . . . , xN) the secret key is used to invert the HTDF to
find inputs (u1, . . . , uN) such that fpk,xi

(ui) = vi for each 1 ≤ i ≤ N . Then

anyone can verify the signature by checking each fpk,xi
(ui)

?
= vi with the

public parameters.
Furthermore anyone can publicly homomorphically compute a signature

u∗g,y for y = g(x1, . . . , xN) if they have signed data (x1, . . . , xN). This sig-
nature will satisfy fpk,y(u∗g,y) = v∗ where v∗ can also be homomorphically
computed by a verifier from g and the public parameters.

8

3.4 Signatures in the Random Oracle Model

A problem with the above construction is that we need public parameters as
long as the message being signed. One way to eliminate this requirement is
through the random oracle model. In the random oracle model, hash func-
tions behave like completely random functions. This is what hash functions
are designed to do, but a real hash function cannot be truly random. How-
ever, assuming hash functions do behave randomly often leads to simpler
proofs or constructions.

In the scheme presented here, we no longer need N outputs of the HTDF
to serve as public parameters. Instead, generate (v1, . . . , vN) when signing by
using a random hash function H to set vi = H(r, i) where r is randomness
generated by the signing procedure (and must be included as a part of
the signature). Whereas in the standard model we had a public key of
(pk, v1, . . . , vn) where pk is the public key for the HTDF, our public key is
now just pk.

Verifying a signature is essentially the same as before, but now the verifier
computes (v1, . . . , vN) themselves using H and r. Homomorphic computa-
tion over signatures is fundamentally the same. Note that in both models
of computation, a verifier does not need the original data (x1, . . . , xN) to
verify a signature u∗g,y for y = g(x1, . . . , xN).

4 Another Leveled Fully Homomorphic Scheme

4.1 Introduction

The motivation for fully homomorphic signature schemes arises from the
shift from local computing to remote storage and computation. Homomor-
phic encryption schemes already allow for computation on encrypted data.
For outsourced data it is desirable to have a verification method to ensure
that the computations performed were correct and by the desired party. Ho-
momorphic signature schemes allow for a way to verify remote computation.
The idea is that the computing party will provide a small signature σ. The
signature must be easily verifiable, but difficult for anyone other than the
computing party to forge.

We present a fully homomorphic signature scheme due to Gorbunov and
Vaikuntanathan [4]. The construction is based on the signature scheme from
trapdoor permutations by Bellare and Rogaway [2]. The security of the
scheme is based on the assumed hardness of finding short integer solutions
in hard lattices. The novel construction is based on homomorphic hash

9

functions and fully key-homomorphic trapdoor functions.

4.2 Key-Homomorphic Trapdoor Functions

The base signature scheme is based on a trapdoor permutation. The signa-
ture algorithm generates a trapdoor permutation pair of functions fpk and
f−1pk and a hash function H(·). The signature is obtained by hashing the mes-

sage m, and then using the inverse function on the result: σ = f−1pk (H(m)).
To verify check that fpk(σ) = H(m). The trapdoor function used here does
not have to be a trapdoor permutation; it is sufficient to have a pre-image
sampleable family of surjective functions.

In order to make the signature scheme homomorphic, the hash function
and trapdoor function must also be fully homomorphic. Given two messages
m1,m2 signed by functions f−1pk1

, f−1pk2
respectively, and hash function H(·),

the signature can be obtained as follows:

σ′ = f−1pk1
(H(m1)) + f−1pk2

(H(m2))

= f−1pk1+pk2
(H(m1) +H(m2)) = f−1pk1+pk2

(H(m1 +m2))

The verification algorithm will check that fpk1+pk2(H(m1 +m2)) = σ′.

4.3 Construction of the Trapdoor Function

The difficulty in breaking this signature scheme is based on the hardness
short integer solutions (SIS) problem, which requires a short solution to
AR = 0, given a uniformly random A. Although there might exist many
solutions, they are difficult to find which follows from the difficulty of finding
solutions to standard arbitrary lattice problems. However, given a trapdoor
for A, finding the solution to SIS becomes easy.

The hash function H takes l-bit input ~µ = (µ1, . . . , µl).

H(~µ) = (D1 + µ1B,D2 + µ2B, . . . ,Dl + µlB)

B,D1, . . . ,Dl are uniformly random matrices in Zm×n
q . n is the lattice

dimension and m = Ω(n log q). The hash function contains a trapdoor for
the matrix B.

The trapdoor function for signing takes the form

fA(R1, . . . ,Rl) = (A1R1, . . . ,AlRl)

A is a uniformly random matrix in Zm×n
q . Ri are m × m matrices with

”small” entries. This function is pre-image sampleable, as shown by Gentry,

10

Peikert, and Vaikuntanathan [3]. Using a short basis of the lattice it is
possible to sample a random inverse of any element in the range of the
function. This is a necessary component of the base signature scheme.

4.4 Homomorphic Property for Circuits

Given a circuit C (reduced to NAND gates), one should be able to com-
pute C(H(~µ)) and get the encrypted output H(C(~µ)). In addition, given
f−1pk (H(~µ)) one should be able to compute f−1C(pk)(H(C(~µ))). For each NAND
gate, the signature can be computed publicly by anyone that knows the sig-
nature for the two input bits. For bits µ1, µ2 let D1 + µ1B,D1 + µ1B be
the hash values, respectively. Compute a matrix D̃2 such that BD̃2 = D2.
The hash for the the NAND of two bits is as follows:

(D1 + µ1B) · D̃2 − µ1 · (D2 + µ2B) = D1D̃2 − µ1µ2 ·B =
(D1D2 −B) + (µ1NANDµ2) ·B = Dout + (µ1NANDµ2) ·B

The signature for the entire circuit is computable gate by gate. All that
remains is to compute the signature for the NAND gate. For the two input
bits µ1 and µ2, suppose the signatures are ”short” matrices R1 and R2 such
that:

AR1 = D1 + µ1B and AR2 = D2 + µ2B

Without a trapdoor for the signing function, these ”short” matrices are hard
to find. The homomorphic NAND of the signature of the two bits is shown
here:

A(R1D̃2 − µ1R2) = (D1 + µ1B) · D̃2 − µ1 · (D2 + µ2B) =
D1D̃2 − µ1µ2 ·B = Dout + (µ1NANDµ2) ·B

The signature for the NAND is R1D̃2 − µ1R2. In the same manner as
computing the hash for the entire circuit, the signature for the circuit is
computed gate by gate.

4.5 Multiple Datasets

For multiple datasets { ~µj}, in order to ensure that an adversary cannot
reuse signatures, each dataset must be tagged with a tag t that is unique
to the dataset, i.e the tag of the computed circuit output µ′ must match
the tag of the input dataset ~µ. The security is defined as follows: A PPT
adversary should not be able to forge a signature for a previously unseen
tag, nor should the adversary be able to forge a signature for a previously
seen tag but with incorrect computation.

11

4.6 Limitations

The size of the signature will be mO(d), which grows by a polynomial factor
m based on the depth of the circuit, d. For correctness and security q must
be larger than mO(d). This implies that the for a fixed q the depth of the
circuits acceptable by this signature scheme are capped. Hence the signature
scheme is ”leveled.”

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended ab-
stract). STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. CCS ’93, pages 62–73, New York, NY,
USA, 1993. ACM.

[3] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. STOC, pages 197–206, 2008.

[4] S. Gorbunov and V. Vaikuntanathan. (leveled) fully homomorphic signa-
tures from lattices. Cryptology ePrint Archive, Report 2014/463, 2014.

[5] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic sig-
nature schemes. In B. Preneel, editor, Topics in Cryptology CT-RSA
2002, volume 2271 of Lecture Notes in Computer Science, pages 244–262.
Springer Berlin Heidelberg, 2002.

[6] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–
126, Feb. 1978.

[7] D. Wichs. Leveled fully homomorphic signatures from standard lattices.
Cryptology ePrint Archive, Report 2014/451, 2014.

12

