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Signatures from Public-Key Encryption

● Completeness of Encryption:
Decsk(Encpk(M)) = M

● Why not reverse the order?
σ = Decsk(M)
M = Encpk(σ)



Homomorphic Signatures

If we have a signature σ for some data x, we 
want to be able to publicly compute a valid 
signature σ’ on the computation f(x)

Data 
Owner

Remote 
Server Third Party

x, σ f(x), σ’



Weakly Homomorphic Signatures
● Note that just as RSA encryption is weakly 

homomorphic over multiplication, signatures from RSA 
are weakly homomorphic

● Let σ1, σ2 be valid signatures for x1, x2, that is, σi = xi
d

● Then σ1 · σ2 = x1
d · x2

d = (x1 · x2)
d is a valid signature for 

the message x1 · x2



Security of Signature Schemes
(x1, …, xN)

(pk, sk) ← KeyGen(1λ)
(σ1, …, σN) ← Signsk(x1, …, xN)

x’, σ’

Adversary wins if x’ ∉ (x1, …, xN) 
but σ’ is a valid signature for x’



Security of Homomorphic Signatures

● If our scheme is homomorphic over a binary 
operation ๏ : Ｍ ×Ｍ → Ｍ this notion of 
security is not good enough

● Adversary is able to generate valid 
signatures for x1๏x2, (x3๏x4)๏x5 and so on

● That is, any message in span๏(x1, …, xN)



Security of Homomorphic Signatures

(x1, …, xN)

(pk, sk) ← KeyGen(1λ)
(σ1, …, σN) ← Signsk(x1, …, xN)

x’, σ’

Adversary wins if x’ ∉ span๏(x1, …, xN) 
but σ’ is a valid signature for x’



Homomorphic Signature Scheme

The big picture is given a signature of some 
message, another party will be able to compute 
a valid signature of the sub-message, or a 
subset of the message also known as 
redaction. This idea can be represented in a 
scenario with two people Alice and Bob. 



Scenario

Alice

MESSAGE
x1x2x3x4x5

Signed 
Management

Alice wants to show another 
party, lets say Bob, but Bob is not 
allowed to see certain parts of the 
message.

Bob



Scenario Continued

MESSAGE
x1x2x3x4x5

Signed 
Management

The Message contains x1,x2,
x3, ..., ,xn, which represents the 
words or letters in the message. 
Also known as redacting the 
message



Scenario Continued

MESSAGE
x1x2x3x4x5

Signed 
Management

If Bob is not allowed to see the 
word or characters at x1 and x2, 
Alice would just replace those two 
elements from the message with 
symbols

MESSAGE
##x3x4x5

Signed 
Management

Alice Bob



Scenario Continued

Why would we use symbols to replace the 
character or word instead of simply just deleting 
it entirely?



Scenario Continued

By showing the positions where the elements 
have been deleted is that the meaning of the 
message could change.

Our co-worker, Alex, spends 60 
hours a week trying to find 
ways to add value to our 
bottom line, and never have I 
known him to shirk his duties. 
Alex is a true asset to our 
company, and I cannot think of 
one person better suited to 
your appointments.

Management Alice



Scenario

Alice could remove some of the words to 
change the message’s meaning

Our co-worker, Alex, spends 60 
hours a week trying to find 
ways to add value to our 
bottom line, and never have I 
known him to shirk his duties. 
Alex is a true asset to our 
company, and I cannot think of 
one person better suited to 
your appointments.

Our co-worker, Alex, spends 60 
hours a week trying to shirk his 
duties, and I can think of one 
person better suited to your 
appointments.



Scenario Continued

Our co-worker, Alex, 
spends 60 hours a week 
trying to find ways to add 
value to our bottom line, 
and never have I known him 
to shirk his duties. Alex is a 
true asset to our company, 
and I cannot think of one 
person better suited to your 
appointments.

Our co-worker, Alex, 
spends 60 hours a week 
trying to #### #### ## ### 
##### ## ### ###### #### 
### ##### ####  ##### ### 
## shirk his duties  #### ## 
# #### ##### ## ### 
####### and I can### think 
of one person better suited 
to your appointments.



Scenario Continued

The idea of this paper is to construct an 
algorithm which will verify whether the redacted 
message is actually a sub-message of the 
original message. 

MESSAGE
x1x2x3x4x5

Signed 
Management

MESSAGE
##x3x4x5

Signed 
Management

MESSAGE
##x3x4x5,y30

Signed 
Management



Scenario Continued

When Alice sends Bob the redacted message, Bob might 
want to make sure that this is the original message and 
would want to verify the authenticity of it. 

Management
message

signature

redacted message

signature of 
redacted message



Trivial scheme for Redactable Sig.

Sig(x) = <Sig0(n,v), s(1,x1), s(2,x2), … , s(n,xn)>

Document ID, or 
key value

Message character 
or word

Author’s 
authentication of key 
value pair. Produces 
signature for each 
message

Public key 



Redaction for Trivial Solution

Sig(x) = <Sig0(n,v), s(1,x1), s(2,x2), … , s(n,xn)>

Sig(x) = <Sig0(n,v), s(2,x2), … , s(n,xn)>

If you want to redact the 
character from position x1

Will not reveal the redacted parts of 
message but it will reveal locations.



Issue with Trivial

Sig(x) = <Sig0(n,v), s(1,x1), s(2,x2), … , s(n,xn)>

Sig(x) is very long. Consider that each “s” 
will produce a m bit signature, and the 
signature applies to each letter of the 
message (n), so the length of Sig(x)  = mn + 
O(1)         an arbitrary constant. Much 
longer than the length of the message: n



Tree Construction Main Idea

1) Construct a tree where each leaf is 
associated with a letter in the message.

2) Compute a hash value for each leaf. Then 
climb the tree combining all the signed letter.

3) Sign the root of the tree and compute Sig(x)



Expansion of the Tree
A randomly generated Ke is the root node and a given 
function G is used to recursively create the tree. 

Ke

K0

G G

K1

G = <Kn0,Kn1> 

K00 K01 K10
K11

X1 X2 X3 X4



Hashing of Tree
Take all the key, value pairs and apply a hash function to 
them. Analogous to s(k,xn) from trivial. Create a new tree.

ve

v0

Hash

v1
vl = Hash(0,xl,Kl) for leaves

v00 v01 v10
v11

X1 X2 X3 X4

vn = Hash(1,vn0,vn1) for nodes



Signing the Tree

ve

v0

Hash

v1

v00 v01 v10
v11

X1 X2 X3 X4

ve = Hash(1,vn0,vn1) for all 
nodes

Use Sig0(ve) and Ke to 
check Sig(x). 



Redaction with Tree Structure

Ke

K0

G G

K1

K00 K01 K11

X1 X2 X4

ve

v0

Hash

v1

v00 v01 v10
v11

To calculate Signature of redaction, we need to remove the character value 
along with the key. So if we want to keep character x3 hidden we would 
remove it from the tree. 



Issue With Only Removing Character
Since the Ke and recursive G function is given to the other 
party, they can generate all the keys associated with the 
different values. Since we’ll need all the “v” values (Hash(0,
xl,Kl)), the other party can iterate through all the values of xl 
to see which key represents that character and know the 
identity of that redacted character. 
Solution: Hide any ancestor keys that can allow the 
formation of the redacted character’s key



Redaction Tree Construction ver. 2

Ke

K0

G G

K1

K00 K01 K11

X1 X2      X4

ve

v0

Hash

v1

v00 v01 v10
v11

Sig(x’) = <k0,k11,v10,Sig0(ve)>



Runtime of Tree Redaction
Summing it all up:

Reason we went over this construction is because it is shorter than 
the trivial construction. Reminder: the trivial construction was length 
n*m + some constant. 

Unredacted Tree Construction: m + m’
Tree Construction: m + O(s*m’ log(n * n’))

m = Sig0 m’ = hash value and keys
n = length of message s = removed segments
n’ = length longest removed segment 



Fully Homomorphic Signatures

● Given data x = (x1, …, xN) and associated 
signatures (σ1, …, σN), we want to be able to 
compute a signature σ* for the result of some 
computation over x, y = g(x1, …, xN)



Fully Homomorphic Signatures

● (pk, sk) ← KeyGen(1λ, 1N)

● (σ1, …, σN) ← Signsk(x1, …, xN)

● σ* = Evalpk(g, ((x1, σ1), …, (xN, σN)))

● Verifypk(g, y, σ*)



Security Game
(x1, …, xN)

(pk, sk) ← KeyGen(1λ, 1N)
(σ1, …, σN) ← Signsk(x1, …, xN)

g, y’, σ’

Adversary wins if y’ ≠ g(x1, …, xN) but Verifypk(g, y’, σ’) = accept



Construction (Wichs, 2014)

● Introduce Homomorphic Trapdoor Functions
● Construct leveled signature scheme

○ Fix maximal degree of polynomial
○ Bounded data



Homomorphic Trapdoor Functions

● One direction is easy to compute: fpk(x, u) = v
● Trapdoor for inversion: Invsk(x, v)
● Given values ui, xi, vi and a function g, 

construct u*, v* so that fpk(g(x1, …, xN), u*) = 
v*



Homomorphic Trapdoor Functions

● (pk, sk) ← KeyGen(1λ)
● Given ui, xi, set vi = fpk(xi, ui), 1 ≤ i ≤ N
● Trapdoor: fpk(x, Invsk(x, v)) = v

● u* = Evalinpk(g, (x1, u1), …, (xN, uN))

fpk(g(x1, …, xN), u*) = v*
v* = Evalout

pk(g, v1, …, vN)



Security of HTDFs

● One-wayness: it should be hard to find some 
pre-image u such that fpk(x, u) = v for given x, v

● Claw-freeness: it should be hard to find inputs 
u, u’ and x ≠ x’ such that fpk(x, u) = fpk(x’, u’)



Signatures from HTDFs

(pk, sk) ← KeyGen(1λ, 1N)

● Choose public parameters prms = (v1, …, vN) 
uniformly at random

● Generate (pk’, sk’) ← KeyGenHTDF(1λ)
● Return pk = (prms, pk’), sk = (prms, sk’)



Signatures from HTDFs

(σ1, …, σN) ← Signsk(x1, …, xN)

● Generate a preimage ui such that fpk’(xi, ui) = 
vi

● ui ← Invsk’(xi, vi)
● Return σi = ui

● Then fpk(xi, ui) = vi



Signatures from HTDFs

σ* = Evalpk(g, ((x1, σ1), …, (xN, σN)))

● Simply return 
σ* = u* = Evalinpk’(g, (x1, σ1), …, (xN, σN))



Signatures from HTDFs

Verifypk(g, y, σ*)

● Compute v* = Evalout
pk’(g, v1, …, vN)

● Check whether fpk’(y, σ*) = v*

● Accept or reject accordingly



Security of Signature Scheme

● Assume an attacker has found some values 
(g, y’, σ’) where y’ ≠ y, but Verifypk(g, y’, σ’) 
accepts the signature σ’ as valid

● The attacker can also compute (g, y, σ*), 
where σ* = Evalpk(g, ((x1, σ1), …, (xN, σN))) so 
that σ* is the valid signature for y

● Then fpk(y, σ) = fpk(y’, σ’), which breaks the 
claw-freeness of the HTDF



Background on Lattice Problems

● Short Integer Solutions (SIS)
● Given a random integer matrix A, we want to 

find an integer vector u with A·u = 0 (mod q)
● u cannot be the zero vector
● ||u|| < β for some upper bound β



Background on Lattice Problems

● Inhomogeneous Short Integer Solutions (ISIS)
● Given a random integer matrix A and some 

integer matrix V, we want to find an integer 
matrix U with A·U = V (mod q)

● Equivalent to SIS
● Hard in average case, but there are trapdoors
● There is a matrix G for which ISIS is easy



Constructing HTDFs

(pk, sk) ← KeyGen(1λ)

● Sample a random matrix A along with its SIS 
trapdoor td

● Return pk = A, sk = td



Constructing HTDFs

v = fpk(x, u)

● Let G be a matrix for which SIS is easy
● Define fA(x, U) ≔ A·U - x·G 



Constructing HTDFs

fpk(x, Invsk(x, v)) = v

● Use the trapdoor for A = pk to find a solution 
matrix U to the ISIS problem A·U = V + x·G

● Return Invtd,x(V) = U
● fA(x, Invtd(x, V)) = A·U - x·G = V + x·G - x·G = 

V



Homomorphic Properties of HTDFs

● Addition: let g(x1, x2) = x1 + x2

u* = Evalinpk(g, (x1, u1), …, (xN, uN))
v* = Evalout

pk(g, v1, …, vN)

● Set U* = U1 + U2, V
* = V1 + V2

● fA,     (U
*) = A·U* − (x1 + x2)·G 

= (A·U1 − x1·G) + (A·U2 − x2·G) = V* 
x1 + x2



Homomorphic Properties of HTDFs

● Multiplication: let g(x1, x2) = x1 · x2

u* = Evalinpk(g, (x1, u1), …, (xN, uN))
v* = Evalout

pk(g, v1, …, vN)

● Find a matrix R such that G·R = -V2
● Set U* = x2·U1 + U2·R, V* = V2·R



Homomorphic Properties of HTDFs
fA,x ·x (U

*) = A·U* − (x1 · x2)·G
= A·(x2·U1 + U2·R) − (x1 · x2)·G
= x2·(A·U1 − x1·G) + A·U2·R 
= x2·V1 + (V2 + x2·G)·R 
= x2V1 + V2·R − x2·V1 = V2R = V*

21



Security of HTDF Construction

● Assume we can find a claw (U0, U1) such that 
fA,0(U0) = fA,1(U1)

● That is, A·U0 - 0·G = A·U1 - 1·G
● Or A·(U1 - U0) = G
● But we can sample a short r such that G·r = 0
● Then u = (U1 - U0)·r is a short vector such that 

A·u = 0, which breaks SIS



Noise Growth

● With SIS and ISIS, we are looking for short 
solution matrices

● When we homomorphically evaluate new 
signatures, we are increasing the size of these 
matrices, β → (m + 1)β → … → (m + 1)dβ

● Choose a maximum degree d for functions



Construction (Gorbunov & Vaikuntanathan, 2014)

● Similar to the Wichs’ construction
● Idea for multiple datasets: tags
● Explicit construction for circuit representation 

of a function



Multiple Datasets

● Tag t∈ {0,1}λ associated with each dataset
● New security game:

○ Adversary can make calls to an oracle Osk(.)
○ q calls
○ {xj

→
 }j∈ [q] queried datasets; {σj 

→, tj }j∈ [q]  replies
● Adv. wins if Verify(pk, t*, x*, σ*, c*) = 1 and:

○ t* ≠ tj for all j∈ [q] OR
○ t* = tj  for some j∈ [q] but x* ≠ c*(xj

→)



Definition

● Homomorphic signature scheme for the 
class of circuits C

● HS = (Setup, Sign, Eval, Verify)



● Setup(1λ, 1n) → (pk, sk)
● Sign(sk, t, i, x) → σ
● Eval(pk, t, (x1,… ,xn ),(σ1,… ,σn ), c)  → σ’
● Verify(pk, t, x’, σ’, c) → {0,1}

Definition (cont.)



Circuit Representation

● Reduce to NAND gates
● Let Cλ be a collection of Boolean circuits with 

at most n inputs
● For c∈ Cλ 
● Input wires indexed 1 to n
● Internal wires indexed n+1 to |c|
● Each gate is a tuple (u,v,w)



Setup(1λ, 1n, 1d)

● Sample random matrices: A, {Di }i∈[n] in ℤq
n×m

● Sample two matrices with associated 
trapdoors: (A*, TA* ) and (B, TB )

● Output public key and secret key:
pk = (A, A*, B, TB , {Di }i∈[n] )
sk = TA*



Sign(sk, t, i, x)

● Dataset lattice: At := [A*|A+tB]
● Sample [R2|R1] s.t.:

At       = A*R2
 +(A+tB)R1 = Di+xB

● Output signature σ = [R2|R1]

R2
R1



Eval(pk, t, u→, σ→, c)

● Compute homomorphic signature recursively
● For each wire i, let Di be the “public key” 

associated with the wire
● Gate g=(u,v,w) carrying inputs values a,b
● Signatures for inputs u,v are Ru ,Rv
● AtRu= Du + aB 
● AtRv= Dv + bB



Eval(pk, t, u→, σ→, c) (cont.)

● Define public key for output wire as
Dw := DvDu

~ - B
● Du

~∈ ℤm×m s.t. BDu
~ = Du

● Compute homomorphic signature:
Rw = RvDu

~ - bRu



Verify(pk, t, x, σ, c)

● Take Dc = D|c| (public key for circuit) and 
verify that:
AtR = Dc + xB mod q



Correctness

● Want to show that
AtR = Dc + c(x→)B

● Idea: signature for each gate output is valid, 
entire circuit must be valid



Correctness (cont.)

● For g = (u,v,w) carrying inputs a,b
● AtRw = At(RvDu

~ - bRu)
= AtRvDu

~ - bAtRu
= (Dv +bB)Du

~- b(Du +aB)
= DvDu

~+ bDu -bDu-abB)
= DvDu

~ - abB
= Dw+ (1-ab)B 
= Dw+ (a NAND b)B



Correctness (cont.)

● NAND is computed correctly, signature for 
every output can be computed



The End


