
RSA Attacks

Kevin Clark, Rainier Rabena, Tahseen Rabbani

April 20, 2015

1 Public Key Cryptosystems

Public key, or asymmetric, cryptosystems are a class of protocols that make use of two

seperate procedures, one for encryption, E, and one for decryption, D. E is revealed to

the public, while the details of D are kept private by each user.

The following four properties are essential for such a system.

1. Decrypting the encrypted version of a message m produces m

D(E(m)) = m

2. E and D are easy to compute

3. Possesion of E does not reveal an easy way to compute D.

4. Encrypting the decrypted version of a message m produces m

E(D(m)) = m

A function, E, that satis�es these 4 properties is known as a "trap-door one-way per-

mutation" This concept was introduced by Di�e and Hellman [DH76], but they did not

provide an example of such a function. The security of such systems is based on math-

ematical problems for which there no e�cient method of solving them in polynomial

time. They are "one-way" functions because they are easy to compute in one direction

but di�cult to compute in the other direction. They are "trap doors" becuase the inverse

is easy to compute once some private piece information is known.

1.1 Privacy and Key Distribution

Asymmetric key cryptosystems allow users to establish privacy without a priori ex-

change of information. Symmetric key cryptosystems, which lack property 3 from earlier,

su�er from what is called "the key distribution problem." Before a private communica-

tion session can begin, another private transaction must occur; the parties involved must

send each other the private keys, by some form of courrier, that will be used for encryp-

tion and decryption. As such, the security of the system is dependant upon the security

of the key distrbution procedure. Systems that require the rapid production and distru-

bution of a large number of keys quickly become infeasible.

1

Public-Key cryptosystems do not su�er from this problem. Alice and Bob can establish

a secure communication session without private exchange of encryption keys. Further-

more, public-key schemes can be used to "bootstrap" a standard encryption scheme. For

example, Alice can send Bob a message encrypted with his public key, but that contains

a private key the two can then use to encrypt future messages using a standard encryp-

tion scheme, such as AES. This "bootstrap" process of negotiating a symmetric key via

messages echanged using public key algorithms is how modern transport layer security

works.

1.2 Signatures

Digital signatures address the problem of proving that a message originated from the

sender. Property 4 from earlier makes such veri�cation possible. When Alice sends Bob

a message, she computes the "signature" by applying her private decryption algorithm

to the original message.

Da(m) = s

Alice then encrypts s using Bob's public encryption algorithm Eb.

Eb(s) = c

She the sends the message to Bob, who can obtain s by applying his private decryption

algorithm

Db(c) = s

He can then obtain the original message by applying Alice's public encryption method.

Ea(s) = m

Bob now has the message key pair (m, s). He cannot modify the message and then later

deny doing so because he could not compute the corresponding signature without Alice's

private decryption method. Alice could not later deny sending the message because no

one else could have computed s = Da(m).

2 RSA

RSA [RSA78] was the �rst set of protocols that satis�ed conditions 1-4 from Section

2.

2.1 Key generation

For Alice to send bob an encrypted message m (represented as a number), she �rst

picks two (very) large, random, prime numbers, (p, q), and multiplies them together to

yield

n = pq

2

n will be used as the modulus to the encryption and decryption algorithms, so it n must

be greater than m. She then computes Euler's totient function on n.

φ(n) = φ(p)φ(q) = (p− 1)(q − 1)

She then picks another large, random integer d which is relatively prime to (p−1)(q−1)

gcd(d, (p− 1)(q − 1)) = 1

Where "gcd" means the "greatest common divisor." Alice then computes the last required

number e, from p, q, and d to be the modular multiplicative inverse of e(modulo(φ(n)))

d ≡ e−1(modulo(φ(n)))

The public key, pk, consists of the modulus n and the public exponent e. The secret key,

sk, consists of the modulus n, and the private exponent d. Formally

pk = {e, n}
sk = {d, n}

2.2 Encryption and Decryption

To encrypt a message m we simply raise the message to the power of the public key,

modulo n.

memod(n) = c

To decrypt the corresponding ciphertext, we raise the message to the power of the private

key modulo n.

cdmod(n) = m

2.3 Security

The security of the RSA crypto system relies on the di�culty of factoring large num-

bers. While n is known to any attacker , there is no known e�cient algorithm for

factoring n into p & q. More generally, the RSA problem is de�ned as the task of taking

the eth roots modulo a composite n: recovering a value m such that c ≡ me(mod(n)).

While no polynomial time algorithm exists for factoring large integers has been found,

it has not been proven that none exists, so whether or not the RSA problem is as hard

as the integer factorization problem is an open question. The remaining sections of this

paper cover novel investigations into attacks against RSA encryption. Section 3 covers

how low entropy in random number generators leaves RSA open to attacks that allow

rapid integer factorization and construction of private keys. Section 5 covers how one

can recover private keys from random key bits. Section 6 covers attacks based on timing.

3

3 Insu�cieant Entropy

Randomness is crucial for modern cryptography. Given its importance, one might

expect that today's widely used operating systems and application software generate

random numbers securely. The paper this section covers [NHH12] tested this proposition

empirically by examining keys in use on the internet.

No one has ever publicly factored a 1024-bit RSA modulus. In contrast, the greatest

common divisor (gcd) of two 1024-bit integers can be computed in microseconds on a

modern personal computer. This asymmetry leads to a well-known vulnerability of RSA:

if an attacker can �nd two distinct moduli that share a common factor,

n1 = p ∗ q1
n2 = p ∗ q2

he can simply divide both moduli by p to obtain the second factor and compute the

secret key. Exploiting this vulnerability then becomes a matter of practically �nding

RSA keys that have this property.

3.1 Data Collection

Using the open source port scanning software nmap, the authors conducted an ex-

haustive search of the ipv4 address space to discover hosts that o�ered TLS or SSH

connections on port 443 or 22, respectively The scan ran at 40,566 IPs/second on aver-

age and �nished in 25 hours. Public keys were obtained via custom software that stopped

mid protocol after a public key was given, stored the result in a database, and moved

on. 12,828,613 protocol handshakes were completed.

3.2 Factorization

The greatest common divisor of two integers can be computed very e�ciently using

Euclid's algorithm. With the help of fast integer arithmetic, the time complexity of

Euclid's algorithm can be imporoved to O(n(lgn)2)lglgn). This is immensely faster than

the O(2n
1/3(logn)2/3) complexity of the fastest known factoring algorithm, the number

sieve. Despite the 15 µs runtime of this algorithm on two RSA keys, the size of the data

set would have required 30 years of computation to naively run the algorithm on each

pair. Instead the authors implemented a custom algorithm based on [Ber04] for factoring

a collection of integers into coprimes.

3.3 Vulnerabilities

By taking a macroscopic view of the internet, that authors were able to identify several

patterns of vulnerability that would not have been possible to see otherwise.

The most glaring observation was the immense number of shared keys. %61 of TLS

hosts, and %65 percent of the SSH hosts served the same key as another host in the scan.

Many of the repeated keys were due to shared hosting. 3 of the 10 most common RSA

keys were served by the same large hosting providers, and many times a large number

of identical TLS certi�cates were served by the same organization.

4

While these cases do not result in vulnerabilites, a common case that did was the use

of manufacturer-default keys. These precon�gured keys wired into the �rmware may be

accessible through reverse engineering, and in fact many public online databases, like

littleblackbox, provide access to private keys for thousands of �rmware releases. %5.34

(670,391) of the TLS hosts served manufacturer- default keys.

Another cause of repeated keys results from insu�cient entropy during key generation.

This leads to two independent hosts choosing a common prime factor in their key. The

heuristic algorithm used to compute GCD on the 11,170,883 RSA moduli allowed the

researchers to obtain private keys for 23,576 (0.40%) of the TLS certi�cates, which were

served on 64,081 (0.5%) of the TLS hosts , and 1,013(0.02%) of the RSA SSH host

keys, which were served on 2459 (0.027%) of th RSA SSH hosts. The vast majority

of vulnerable keys were system- generated by headless or embedded network devices

(routers, �rewalls...).

3.4 Investigation

To better understand the sources of low entropy in key generation, the authors aug-

mented their data analysis with experimental investigations of speci�c implementations

3.4.1 Linux RNG

The authors took an in depth look at the random number generator for linux (RNG)

to investigate the hypothesis that repeated keys were due to insu�cient randomness

provided by the operating system. The Linux RNG maintains an entropy pool, the

Input pool, from which the kernal provides random numbers to processes that read from

/dev/urandom of /dev/random. Fresh entropy from unpredicatble kernel processes is

periodically mixed into the Input pool. Sources of this entropy include uninitialized

contents of pool bu�ers, at boot time, disk access timings, and the startup clock time

in nanoseconds. an Input pool. A common source of entropy used to be IRQ (interrupt

request) timings, but modern Linux systems no longer collect entropy from them. As

a result, the authors discovered what they called a "boot-time entropy hole" , where a

window of vulnerability exists, particularly in embeded systems with no human sources

of entropy, and the RNG output may be completely predictable until a threshold of

entropy is achieved. Long term keys generated by machines during this period are likely

to be vulnerable.

The answer is to make networking devices generate keys only after a threshold entropy

has been reached. This can be achieved through a number of means. Defaulting to

/dev/random, rather than /dev/urandom will ensure that the process stalls until the

kernel has enough randomness in it's pools. Another way to solve this is to have an

application wait until a certain amount of time has passed on the system clock before

starting to generate keys. On the hardware side, production factories could stock their

chips with entropy sequences whose generating process has been tested for security.

5

3.4.2 OpenSSL

A naive implementation of RSA key generation would simply seed a pseudo random

number generator from the OS's entropy pool and then use it to generate p and q. With

this approach, factorable keys would be very unlikely. Instead, though, what we see is

that some devices are prone to generating keys with common factors. To see why this

occured, the authors studied and experimented with the source code of OpenSSL.

OpenSSL relies on an internal entropy pool that it self-maintains. Upon creation, the

entropy pool is seeded with bytes read from /dev/urandom, the process ID, the user

ID, and the current time. The RSA key generating algorithm extracts entropy from

the pool dozens of hundreds of times to produce one key all while, adding entropy from

the invocation time of the algorithm. The data set contained many RSA keys with one

common prime factor p. Upon inspection of the source code, the authors concluded that

the process is hypersensitive to small variations in where the boundary between seconds

falls during execution. This means that in two executions where the clock advances to

the next second during the calculation of the second prime, the �rst prime will be equal,

but the second will depend on when exactly the second changes. As such vulnerable keys

are prone to being produced by embeded or networking devices with low human entropy

and whose start up sequences are deterministically similar.

The problem here is not only one of generating keys with lacking entropy, but of

deterministic entropy sequences that multiple boxes of the same model share during

their boot sequence. We therefore need to add an element of randomness to OpenSSL's

key generating process that isnt correlated across these machines. Relying on the kernel's

/dev/random, whose sources are more plentiful than OpenSSL's, is the best option. It

will stall until the pool is ready, and wont be correlated across machines. Alternatively,

we could generate SSL keys upon �rst use, rather than upon �rst boot. This would

eliminate the similarity across machines in the list of prime factors chosen.

4 Recovering Private Keys from Random Key Bits

4.1 Motivation

For most modern computers, when the power source is removed, the DRAM (Dynamic

Random Access Memory) exhibits remnance, that is, the contents are preserved for

several seconds, albeit in a degraded form. We begin by assuming that the 0s and 1s in

the original representation were present in equal numbers and that the degraded version

of the private key demonstrates unidirectional decay, that is for any altered region,

either 0 → 1 overwhelmingly or 1 → 0 overwhelmingly. Halderman et al. in [JAHF]

demonstrate the most instances of DRAM degradation are unidirectional. Given then

a private key with a ρ fraction of decay, that is, every component of the key has a ρ

fraction of its bits degraded, we would know a δ = (1− ρ)/2 fraction of key bits for any

given component.

This above scenario di�ers from other models where one is assigned a probability of

correctly guessing a given bit � in our model, we truly do know a δ = (1− ρ)/2 fraction

of key bits. We will assume that the acquired private key follows the PKCS#1 standard,

6

meaning it contains the following information:

1. the (n-bit) modulus N

2. the public exponent e

3. the private exponent d

4. dp = d mod (p− 1)

5. dq = d mod (q − 1)

6. q−1p = q−1 mod p

Heninger and Shacham in [HS09] demonstrate that an attacker who takes advantage

of this remnance vulnerability will be able to e�ciently recover an RSA private key with

small public exponent given a random δ = 0.27 fraction of the bits of p, q, d, dp and dq.

By small, it is meant that e is no longer than 32 bits (which is most often the case).

4.2 k, kp, and kq

Before the algorithm can begin, one must recover kp and kq. First we compute k. The

following analysis makes extensive use of 4 relations. The �rst,

N = pq. (1)

Given that e ≡ d−1 mod ϕ(N) where ϕ(N) = (p− 1)(q− 1) = N − p− q+ 1, we derive

the second relation ,

ed = k(N − p− q + 1) + 1 (2)

for some nonnegative integer k. Lastly, given that edp ≡ 1 mod (p − 1) and edq ≡ 1

mod (q − 1), we derive the last two relations,

edp = kp(p− 1) + 1 (3)

edq = kq(q − 1) + 1 (4)

for some nonnegative integers kp and kq. These new components, k, kq, kp will be pivotal

in recovering the original private key.

Boneh, Durfee, and Frankel in [DBF98] note that 0 < k < e. To see this, assume

that e ≤ k. Given that d < ϕ(N), we would have that ed < kϕ(N) + 1, when in fact,

ed = kϕ(N)+1 by relation (2). Furthermore, k 6= 0, since this would contradict relation

(2) when reducing modulo e. Thus, 0 < k < e, and since we assumed e to be small, it is

not di�cult to enumerate all possible values of k. For each candidate k′, de�ne

d̃(k′) :=

⌊
k′(N + 1) + 1

e

⌋
where b·c is the �oor function. In [4] it is also observed that

0 ≤ d̃(k)− d < 3
√
N,

7

meaning that d̃(k) agrees with d on its bn/2c−2 most signi�cant bits. This implies that

a small public exponent will leak half the bits of the private exponent in one of the d̃(k′).

Conversely, Boneh, Durfee, and Frankel prove that a corrupted version of d̃ of d can be

used to �nd k, provided that δn/2 � lg e. Heninger and Shacham note that even for

1024-bit N and 32-bit e, there is with "overwhelming probability" enough information

to determine k for δ ≥ 0.27. This allows us to con�dently assume that prior to running

the algorithm, the attacker will be able to learn k and will be able to correct the most

signi�cant half of the bits of the corrupted d̃.

We will now need to determine kp and kq. Analysis similar to the case of the k

demonstrates that 0 < kp, kq < e. In particular, kp = (kp mod e) and kq = (kq mod e).

If k is known, through a series of clever manipulations on relations (1)-(4) reduced modulo

e, Heninger and Shacham demonstrate that kp ≡ −k(k−1q) mod e and

k2p − [k(N − 1) + 1]kp − k ≡ 0 mod e (5)

If e has m distinct prime factors, the number of roots (solutions) to (5) is equal to 2m.

By symmetry, kq must also be a root. The case when e is prime is particularly nice,

since there are only 2 roots, thus 2 possible assignments for the pair (kp, kq).

Also note that when by reducing relations (3) and (4) modulo e we have that,

−k−1p + 1 = p mod e

−k−1q + 1 = q mod e

so we determine p and q modulo e.

4.3 Reconstruction Algorithm

We may now describe the actual attack which consists of generating partial keys and

eliminating those which do not statisfy the relationships established in the previous

section. Speci�cally, if we know bits 1 through i− 1 of a potential key, we enumerate all

possible combinations of values of bit i for p, q, d, dp, and dq, and keep a combination if

it satis�es (1), (2), (3), (4) mod 2i.

We assume that we know kp and kq. In practice, e is usually prime, in which case we

run the algorithm twice (for the two possible assignments described in the last section).

Let x[i] denote the ith bit of x, where x[0] denotes the least signi�cant bit. Let τ(x)

denote the exponent on the largest power of 2 which divides x. Since p and q are odd

primes (assuming they are large), we immediately know that p[0] = q[0] = 1. Hence,

2 | p − 1, so 2(2τ(kp)) = 21+τ(kp) | kp(p − 1). By reducing (3) modulo 21+τ(kp), we have

that

dp ≡ e−1 mod 21+τ(kp).

Thus, we are able to determine/correct the least signi�cant 1 + τ(kp) bits of dp.

Analogous reductions on relations (4) and (2) also allow us to determine/correct the

1+τ(kq) least signi�cant bits of dq and the 2+τ(k) least signi�cant bits of d. Furthemore,

we can conclude from this analysis that a change in p[i] and q[i] will respectively a�ect

dp[i+ τ(kp)] and dq[i+ τ(kq)] along with d[i+ τ(k)]. De�ne the ith slice as

p[i] q[i] d[i+ τ(k)] dp[i+ τ(kp)] dq[i+ τ(kq)]

8

For a given partial solution up to i − 1 bits, we generate all possible solutions for the

ith slice. By doing this for all solutions in the (i − 1)th slice, we have enumerated all

possible solutions for slice i. We already know the only possible solution for the i = 0

slice, so the algorithm begins there. We recover the factorization of N in one or more

possible solutions after having reached i = bn/2c.
Given a possible solution (p′, q′, d′, d′p, d

′
q) for slice i − 1, it would appear that there

are 25 = 32 possible solutions for slice i, but there are in fact, at most 2 solutions. The

relations (1)-(4) form a set of "constraint polynomials," which in combination with the

Multivariate Hensel's Lemma (an important tool in number theory) reveal that the ith

slice must satisfy the following conditions,

p[i] + q[i] ≡ (n− p′q′)[i] mod 2

d[i+ τ(k)] + p[i] + q[i] ≡ (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2

dp[i+ τ(kp)] + p[i] ≡ (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2

dq[i+ τ(kq)] + q[i] ≡ (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

(6)

Or less intimidatingly, we have a system of the following form:

p[i] + q[i] ≡ c1 mod 2

d[i+ τ(k)] + p[i] + q[i] ≡ c2 mod 2

dp[i+ τ(kp)] + p[i] ≡ c3 mod 2

dq[i+ τ(kq)] + q[i] ≡ c4 mod 2.

(7)

For a given c1, there are only two possible assignments to p[i] and q[i], which consequently

�x the remaining unknowns, thus every solution in slice i − 1 lifts to two solutions in

slice i. In practice, our partial knowledge of the private key would allow us to eliminate

a possible solution in a given i slice if it does not agree with known bits. Heninger and

Shacham summarize the performance of this algorithm in the following theorem,

Theorem 1 Given the values of a δ = .27 fraction of the bits of p, q, d, d mod p,

and d mod q, the algorithm will correctly recover an n-bit RSA key in expected O(n2)

time with probability 1- 1
n2 .

5 Timing Attacks

The basic goal of a timing attack is to determine some secret value by using precise

information about the time taken to execute an algorithm to exploit some �aw in the

implementation of that algorithm. This type of attack can be most easily used when

there is a conditional statement in the algorithm that can follow two di�erent paths

depending on the input. One path is slow and takes a long time to complete, while the

other path is fast and takes a short time to complete. For example, assume we have

a secret bit x, which can be either 0 or 1. Consider the following pseudocode for an

algorithm:

9

Algorithm 1 A simple conditional statement.

if x = 1 then

Perform a slow operation (∼400 ms)

else

Perform a fast operation (∼30 ms)

end if

An adversary tells us to run this algorithm, and he measures the execution time to

be 33 ms. The adversary, then, can conclude that our secret value of x is 0, with high

probability.

The main idea of the attack described in [Koc96] is that it is possible to retrieve the

entire RSA secret key simply by exploiting the timing characteristics of the decryption

operation. By sampling a large enough number of decryption times, we can use statistical

techniques to determine a �guess� for the �rst b bits of the secret key. If we know the �rst

b bits, we can perform a partial execution of the decryption function ourselves, which

allows us to determine the next few bits of the key. We continue to iterate this procedure

until the entire key has been retrieved.

5.1 Attack on Modular Exponentiation

Recall that RSA decryption works as follows: Given the ciphertext c, the secret key

d, and the modulus n, we can determine the original plaintext message m by calculating

m = cd mod n

But how do we actually compute this value? Naively, we can use an accumulator with

an initial value of 1 and perform d multiplications by c to �nd cd. Then we can divide

by n and take the remainder to �nd the result m. However, such an approach becomes

unwieldly for large values of c and d, which tends to happen in strong cryptographic

systems such as RSA. Modern implementations use a square-and-multiply algorithm to

perform modular exponentiation. First, note that d can be expressed in the following

binary form:

d =
w−1∑
k=0

ak2
k

where w is the length of d in bits and ak is the value of bit k in d. Then, the value cd

can be represented as

cd = c(
∑w−1

k=0 ak2
k) =

w−1∏
k=0

(
c2

k
)ak

which means that the value m can be computed as

m ≡
w−1∏
k=0

(
c2

k
)ak

(mod n)

One implementation of this algorithm can be seen in the example below.

10

Algorithm 2 A simple modular exponentiation algorithm.

Let s0 = 1

for k = 0 upto w − 1 do

if ak = 1 then

Let mk = (sk · c) mod n

else

Let mk = sk
end if

Let sk+1 = m2
k mod n

end for

return mw−1

Note that each iteration k of the main loop may need to perform an extra modular

multiplication operation, depending on the kth bit of d. The extra computation time

caused by the di�erence between the two branches is the key to the general timing attack.

Suppose we have j ciphertext messages c0, c1, ..., cj−1 with corresponding timing mea-

surements T0, T1, ..., Tj−1. Suppose also that we have a guess db for the �rst b exponent

bits. Each timing observation consists of T = e+
∑w−1

i=0 ti, where ti is the time required

for the multiplication and squaring steps for bit i, and e is the measurement error. Given

db, the attacker can �nd
∑b−1

i=0 ti for each sample c by running b iterations of the loop him-

self and computing the time taken to run that. Subtracting from T yields e+
∑w−1

i=b ti. If

mb was correct, then the variance of e+
∑w−1

i=b ti is expected to be Var(e)+(w−b) Var(t).

However, if only the �rst c < b bits of mb were correct, then the expected variance is

Var(e) + (w − b+ 2c) Var(t). In other words, correctly emulated iterations decrease the

expected variance by Var(t), while iterations following an incorrect exponent bit each

increase the variance by Var(t).

It is possible to approximate ti using independent standard normal variables. If we

assume that Var(e) is negligible, the expected probability that mb is correct is:

P

(
j−1∑
i=0

(√
w − bXi +

√
2(b− c)Yi

)2
>

j−1∑
i=0

(√
w − bXi

)2)

= P

(
2
√

2(b− c)(w − b)
j−1∑
i=0

XiYi + 2(b− c)
j−1∑
i=0

Y 2
i > 0

)
where X and Y are standard normal random variables. Because j is relatively large,∑j−1

i=0 Y
2
i ≈ j, and

∑j−1
i=0 XiYi is approximately normal with µ = 0 and σ =

√
j, yielding

P
(

2
√

2(b− c)(w − b)
√
jZ + 2(b− c)j > 0

)
= P

(
Z > −

√
j(b− c)√
2(w − b)

)

where Z is a standard normal random variable. Integrating to �nd the probability of

a correct guess yields Φ
(√

j(b−c)
2(w−b)

)
, where Φ(d) is the area under the standard normal

curve from −∞ to d. The required number of samples j is thus proportional to the

exponent size w.[Koc96]

11

5.2 Preventing the Attack

On many processors, the division operation (and subsequently, the modulo operation)

is slow. For the conditional statement inside the main loop of the modular exponen-

tiation algorithm shown above, this slowness is largely the reason why there is such a

noticeable di�erence in the execution times betweeen the two branches. Montgomery

multiplication eliminates this modulo operation and reduces the size of the timing char-

acteristics, but some variance still remains and can be exploited with more precise timing

measurements or an increased number of samples. Some implementations of RSA use

the Chinese Remainder Theorem (CRT) to optimize the decryption process. While the

attack described above does not allow an adversary to extract the secret key directly, it

can be adapted to approximate the value of one of the prime factors of the modulus n,

which can then be used to determine the secret key using the other information available

to the attacker (i.e. the public exponent).

One way to prevent the attack is to make all operations take the same amount of

time. However, �xed-time implementations are also likely to be slow, and unexpected

timing variations can still occur due to compiler optimizations and cache misses. Adding

random delays to the timing measurements to make them inaccurate is another approach

to preventing the attack, but attackers can get around this by adding more samples. The

best solution to this problem is to use a technique known as blinding. This can be done

by choosing a random pair (vi, vf) such that v−f 1 = vdi mod n. Before the modular

exponentiation operation, the input message should be multiplied by vi (mod n), and

afterward the result is corrected by multiplying with vf (mod n). The system should

reject messages equal to 0 (mod n). If this random pair is kept secret, then the attack

does not gain any useful information about the secret key. He is only able to �gure out

the general timing distribution of the modular exponentiation operation.

References

[Ber04] Daniel J. Bernstein. How to �nd smooth parts of integers. 2004.

[DBF98] Glenn Durfee Dan Boneh and Yair Frankel. An attack on rsa given a small

fraction of the private keys bits. Advances in Cryptology, 1514:25�34, 1998.

[DH76] Whit�eld Di�e and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644�654, 1976.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing rsa private keys from

random key bits. Advances in Cryptology, 5677:1�17, 2009.

[JAHF] Nadia Heninger William Clarkson William Paul Joseph Calandrino Ariel Feld-

man Jacob Appelbaum J. Alex Halderman, Seth Schoen and Edward Felten.

Lest we remember: Cold boot attacks on encryption keys. 2008 USENIX

Security Symposium.

12

[Koc96] Paul C Kocher. Timing attacks on implementations of di�e-hellman, rsa, dss,

and other systems. In Advances in Cryptology�CRYPTO'96, pages 104�113.

Springer, 1996.

[NHH12] Zakir Durumeric Eric Wustrow Nadia Heninger, UC San Diego and J. Alex

Halderman. Mining your ps and qs: Detection of widespread weak keys in

network devices. 2012.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-

taining digital signatures and public-key cryptosystems. Communications of

the ACM, 21(2):120�126, Feb 1978.

13

