
Multi-user
Verifiable/Secure
Computation
Ko Dokmai, Saba Eskandarian

Goals
Extend cryptographic protocols with applications to cloud

computing from a two-party to a multi-party setting:

● Verifiable Computation

● Secure Computation

Common Setting

Weak Clients Powerful Cloud

Common Elements

● Multiclient setting

● Outsourced computation

● Best definitions = VBB Obfuscation

Multi-user Verifiable Computation

Setting

Setting

Setting

x1

x2

x3
x4

x5

Setting

f1, x1

f2, x2

f3, x3
f4, x4

f5, x5

Setting

f1, x1

f2, x2

f3, x3
f4, x4

f5, x5

PKI

Security
● Real/Ideal paradigm

● Most desirable definition is unattainable (implies VBB)

● Ideal definition behavior differs based on who is corrupted

● we will assume semi-honest cloud and clients

Ideal Situation

TTP

Primitives Used
● Proxy oblivious transfer (POT)

● Garbled Circuits

● Fully homomorphic encryption (FHE)

Garbled Circuits
● Garble(1k, C) → pk, sk, ᵁ
● Genc(pk, x) → c

● Geval(ᵁ, c) → Y

● Gdec(sk, Y) → y

● y=C(x)

● Extra requirements

1st try: single-client, single-use

Intuition: P1 Garbles function and input,
Server evaluates and sends back results.

P1 Server

1st try: single-client, single-use
P1 Server

Garble(1k, f) → pk, sk, ᵁ
Genc(pk, x) → c ᵁ, c

f, x

1st try: single-client, single-use
P1 Server

Garble(1k, f) → pk, sk, ᵁ
Genc(pk, x) → c ᵁ, c

Geval(ᵁ, c) → Y

Y

f, x

1st try: single-client, single-use
P1 Server

Garble(1k, f) → pk, sk, ᵁ
Genc(pk, x) → c ᵁ, c

Geval(ᵁ, c) → Y

Y
Gdec(sk, Y) → y

f, x

Problem: 1st try only works once.

How can we allow for multiple
function evaluations?

Why not just keep sending more inputs?

2nd try: single-client, multi-use

Intuition: garbled inputs encrypted with FHE

P1 Server

Fully Homomorphic Encryption
● Fgen(1k) → (pkFHE, skFHE)

● Fenc(pkFHE, m) → c

● Fdec(skFHE, c’) → m’

● Feval(pkFHE, f, c1,...,cn)

2nd try: single-client, multi-use

Setup Phase

P1 Server

Garble(1k, f) → pk, sk, ᵁ
ᵁ

2nd try: single-client, multi-use
P1 Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x) → c
Fenc(pkFHE, c) → c’ c’

ᵁ

2nd try: single-client, multi-use
P1 Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x) → c
Fenc(pkFHE, c) → c’ c’

Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’
Y’

ᵁ

2nd try: single-client, multi-use
P1 Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x) → c
Fenc(pkFHE, c) → c’ c’

Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’
Y’

ᵁ

2nd try: single-client, multi-use
P1 Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x) → c
Fenc(pkFHE, c) → c’ c’

Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’
Y’

Fdec(skFHE, Y’) → Y
Gdec(sk, Y) → y

ᵁ

How to go multiparty?

We’ll need some new tools.

What prevents the 2nd try from generalizing to multiparty setting?

Oblivious Transfer (OT)

m0
m1

b

Oblivious Transfer (OT)

m0
m1

b

OT

Sender
Receiver

Oblivious Transfer (OT)

m0
m1

b

OT

Sender
Receiver

Oblivious Transfer (OT)

m0
m1

b

OT
mb

Sender
Receiver

Oblivious Transfer (OT)

m0
m1

b

OT
mb

Sender
Receiver

● learns mb
● does not learn m1-b

● does not learn b

Proxy Oblivious Transfer (POT)

m0
m1

b

Proxy Oblivious Transfer (POT)

m0
m1

b

POT

Proxy Oblivious Transfer (POT)

m0
m1

b

POT

Proxy Oblivious Transfer (POT)

m0
m1

b

POT

mb

Proxy Oblivious Transfer (POT)

m0
m1

b

POT

mb

● does not learn b

● does not learn m0
● does not learn m1

● learns mb
● does not learn m1-b
● does not learn b

Proxy Oblivious Transfer (POT)

m0
m1

b

mb

᷍

᷎

What it really looks like:

Proxy Oblivious Transfer
● SetupS(1k) → (pks, sks)

● SetupC(1k) → (pkc, skc)

● Snd(pkc, sks, m0, m1) → ᷍
● Chs(pks, skc, b) → ᷎
● Prx(pks, pkc, ᷍, ᷎) → y

● y=mb

3rd try: multi-user, multi-use

Intuition: use POT to allow P2...Pn to pick their
inputs for the Garbled Circuit

P1 ServerP2...n

3rd try: multi-user, multi-use

Setup Phase
P1 Server

Garble(1k, f) → pk, sk, ᵁ
SetupS(1k) → pks, sks ᵁ

P2...n

SetupC(1k) → pkc, skc

3rd try: multi-user, multi-use
P1

Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x1) → c1
Fenc(pkFHE, c1) → c1’

for i from 2 to n and for j from 1 to l
(l = length of input):

x0=Fenc(skFHE, Genc(pk, 0))
x1=Fenc(skFHE, Genc(pk, 1))
Snd(pkci, sks, x0, x1) → ᷍ij

c1’, ᷍

3rd try: multi-user, multi-use

Server

for j from 1 to l:
Chs(pks, skci, xij) → ᷎ij

Send all ᷎ij to Server

᷎i

P2...n

3rd try: multi-user, multi-use

P1

Server

For each i,j: Prx(pks,pkci, ᷍ij, ᷎ij) → cij’
Reassemble c1’ and all cij’ in order of
subscript into c’
Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’

Y’

3rd try: multi-user, multi-use

P1

Server

For each i,j: Prx(pks,pkci, ᷍ij, ᷎ij) → cij’
Reassemble c1’ and all cij’ in order of
subscript into c’
Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’

Y’

Fdec(skFHE, Y’) → Y
Gdec(sk, Y) → y

Summary
● Extended Verifiable Computation to multiparty setting

● Used POT, Garbled Circuits, and FHE

● Compute Garbled Circuit inside FHE

● Use POT so clients P2...n can pick from inputs sent by P1

● Next: Secure Computation

On-the-Fly Multiparty Computation
on the Cloud via Multikey

Fully Homomorphic Encrptyion

Multiparty Computation

x
3

f(x
1
,x

2
,x

3
,x

4
)

Without input secrecy

x
2

x
4

x
f

Multiparty Computation

With input secrecy

x 1 x 2 x
3

x
4

x
1

x
2

x
3

x
4

f(x
1
,x

2
,x

3
,x

4
) x

f

Trusted Third Party

Secure Multiparty Computation (MPC)

Enc
(x 1

)

E
nc

(x
2
) E

nc(x
3)

Enc(x
4)

x
1

x
2

x
3

x
4

SimulatedSimulated
Third PartyThird Party

f(x
1
,x

2
,x

3
,x

4
) x

f

Secure Multiparty Computation (MPC)

● Security Models

– Semi-Honest Adversaries follow the protocol
as described but try to learn information about
honest player's input

– Malicious Adversaries can deviate from the
protocol to learn honest player's input

Secure Multiparty Computation (MPC)

● Security Models

– Semi-Malicious Adversaries are like semi-
honest adversaries but can sample random
elements from any arbitrary distribution

Secure Multiparty Computation (MPC)

● Problem with regular MPC?

– Highly interactive

– One-time use

– Assume all parties are equally powerful

On-the-Fly MPC on the Cloud

Powerful Cloud

Weak Clients

x
1

x
2

x
3

x
4

On-the-Fly MPC on the Cloud

c 1
=Enc

(x 1
)

c 2
=

E
nc

(x
2
) c

3 =E
nc(x

3)

c
4 =Enc(x

4)

x
1

x
2

x
3

x
4

On-the-Fly MPC on the Cloud

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

On-the-Fly MPC on the Cloud

c
1

c
2

c
3

c
4

f(·,·,·)

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

Some
Function
Request

Please compute
f on client 1, 3, and

4's data!

On-the-Fly MPC on the Cloud

c
1

c
2

c
3

c
4

f'(c
1
,c

3
,c

4
) c

f

On-the-Fly MPC on the Cloud

 Z
 Z
z

c
f
,f

Imaginary
Trusted Third Party

f

On-the-Fly MPC on the Cloud

sk
1 sk

3

sk
4 Approved!

Approved!
Approved!

Z
 Z
 z

On-the-Fly MPC on the Cloud

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

f(x 1
,x 3

,x 4
)=Dec(c f

)

On-the-Fly MPC on the Cloud

 Z
 Z
z

 Z
 Z
z

 Z
 Z
z

Anyone else?

Yes!
Please compute
g on client 2 and

4's data!

g(·,
·)

Properties

We want:

– Dynamically chosen functions on-the-fly

– Functions compute on an arbitrary subset of
data

– Non-interactive function evaluation on the cloud

Properties

We want:

– Clients are unaware of the identity or the number
of other clients

– Relevant clients approve the choice of functions
after evaluation and before decryption

Semi-Malicious Construction:
Building Blocks

Multikey Fully Homomorphic Encryption

{Ɛ(N)=(Keygen,Enc,Dec,Eval)}
N>0

where N is the number of key pairs

– Key Generation
● (pk,sk,ek)←Keygen(1k)

Semi-Malicious Construction:
Building Blocks

Multikey Fully Homomorphic Encryption

– Encryption
● c←Enc(pk,m)

– Decryption

● m:=Dec(sk
1
,...,sk

N
,c)

Semi-Malicious Construction:
Building Blocks

Multikey Fully Homomorphic Encryption

– Evaluation

● c:=Eval(C,(c
1
,pk

1
,ek

1
),...,(c

l
,pk

l
,ek

l
))

where each tuple of {(pk
i
,sk

i
,ek

i
)}

i [l]∈
 is in

{(pk
j
,sk

j
,ek

j
)}

j [N]∈

Semi-Malicious Construction:
Building Blocks

Multikey Fully Homomorphic Encryption

– Correctness

● Dec(sk
1
,...,sk

N
,c)=C(m

1
,...,m

l
)

– Compactness
● |c|≤P(k,N)

Semi-Malicious Construction:
Building Blocks

Multikey Fully Homomorphic Encryption

– Compactness is important, since we don't want
the running time of decryption to depend on the
size of circuits

Semi-Malicious Construction:
Building Blocks

Semi-Malicious Secure MPC

– Server-Aided Secure MPC
● Powerful server and weak clients
● Most computation are carried out by the

server
● Clients only communicate with the server

Semi-Malicious Construction:
Where the Building Blocks fit

Offline Phase

1)Clients samples (pk
i
,sk

i
,ek

i
)

2)c
i
←Enc(pk

i
,x

i
)

3)Send c
i
, pk

i
, ek

i
 to the

server

x
1

x
2

x
3

x
4

Semi-Malicious Construction:
Where the Building Blocks fit

Online Phase

– Choose a function

f(·,·,·)

Semi-Malicious Construction:
Where the Building Blocks fit

Online Phase: Step 1

1)The server performs
multikey FHE

2)The server broadcasts the
evaluated ciphertext to all
computing parties

c
1

c
2

c
3

c
4

f'(c
1
,c

3
,c

4
) c

f

 Z
 Z
z

BroadcastBroadcast
ChannelChannel c

f

Semi-Malicious Construction:
Where the Building Blocks fit

Online Phase: Step 2

– Run server-aided
MPC protocol to
decrypt the evaluated
ciphertext

Server-AidedServer-Aided
MPCMPC

Z
 Z
 z

Interactions

Problems with the Semi-Malicious
Construction

1) Clients may encrypt data incorrectly

2) Server may compute functions incorrectly

3) Clients may cheat in semi-malicious MPC

4) Clients may use an invalid secret key to decrypt the
resulting ciphertext

Malicious Construction

Clients may encrypt data incorrectly

Fix: Clients must prove this NP relation to server:

RENC={ ((pk,c),(x,s)) | c = Enc(pk,x; s) }

where s is some random string

How? Zero-knowledge Proof

Malicious Construction

Non-Interactive Zero Knowledge (NIZK)

● (Interactive) Zero-Knowledge Proof

message aProver Verifier

challenge c

answer z

Malicious Construction

Non-Interactive Zero Knowledge (NIZK)

● NIZK

common reference string (CRS)Prover Verifier

message a,
challenge c,
answer z

Malicious Construction

Server may compute functions incorrectly

Fix: Server verifies its computation to clients
● Use succinct non-interactive arguments of

knowledge (SNARK)
● Similar to PCP theorem, but non-interactive

Malicious Construction

Clients may cheat in semi-malicious MPC

Fix: Replace semi-malicious MPC with malicious
MPC

Malicious Construction

Clients may use an invalid secret key to decrypt
the resulting ciphertext

Fix: Change the decryption function to this:

Malicious Construction: Summary

c 1
,pk

1
,ek

1
,π 1

c 2
,p

k 2
,e

k 2
,π

2 c
3 ,pk

3 ,ek
3 ,π

3

c
4 ,pk

4 ,ek
4 ,π

4

x
1

x
2

x
3

x
4

Malicious Construction: Summary

c
1

c
2

c
3

c
4

f'(c
1
,c

3
,c

4
) c

f

Malicious Construction: Summary

 Z
 Z
z

BroadcastBroadcast
ChannelChannel c

f
,φ

c f,
φ

Malicious Construction: Summary

MaliciousMalicious
Server-AidedServer-Aided

MPCMPC
In

te
ra

ct
io

ns

Interactions
Interactions

Z
 Z
 z

f(x 1
,x 3

,x 4
)=Dec(c f

) Interactions

How about a protocol with
fewer interactions?

Protocol with Fewer Interactions

 Z
 Z
z

BroadcastBroadcast
ChannelChannel c

f
,φ

c f,
φ

Protocol with Fewer Interactions

MaliciousMalicious
Server-AidedServer-Aided

MPCMPC
In

te
ra

ct
io

ns

Interactions
Interactions

Z
 Z
 z

f(x 1
,x 3

,x 4
)=Dec(c f

) Interactions

Protocol with Fewer Interactions

f(
x 1

,x
3
,x

4
)=

D
ec

(c
f) f(x

1 ,x
3 ,x

4)=
D

ec(c
f)

f(x
1 ,x

3 ,x
4)=

D
ec(c

f)

Z
 Z
 z

Reduction to VBB Obfuscation

Enc(C
)

Enc(x)

F(·,·)
where

F(x,y)=y(x)

Reduction to VBB Obfuscation

Enc(C)

F'(Enc(x),Enc(C)) Enc(C(x))

Enc(x)

Reduction to VBB Obfuscation

Enc(C(x))

Reduction to VBB Obfuscation

C(x
)

Reduction to VBB Obfuscation

F(·,·)

x

C(x)

Enc(x)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

