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Goals
Extend cryptographic protocols with applications to cloud 

computing from a two-party to a multi-party setting:

● Verifiable Computation

● Secure Computation



Common Setting

Weak Clients Powerful Cloud



Common Elements

● Multiclient setting

● Outsourced computation

● Best definitions = VBB Obfuscation



Multi-user Verifiable Computation
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Security
● Real/Ideal paradigm

● Most desirable definition is unattainable (implies VBB)

● Ideal definition behavior differs based on who is corrupted

● we will assume semi-honest cloud and clients



Ideal Situation

TTP



Primitives Used
● Proxy oblivious transfer (POT)

● Garbled Circuits

● Fully homomorphic encryption (FHE)



Garbled Circuits
● Garble(1k, C) → pk, sk, ᵁ
● Genc(pk, x) → c

● Geval(ᵁ, c) → Y

● Gdec(sk, Y) → y

● y=C(x)

● Extra requirements



1st try: single-client, single-use

Intuition: P1 Garbles function and input, 
Server evaluates and sends back results.

P1 Server
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1st try: single-client, single-use
P1 Server

Garble(1k, f) → pk, sk, ᵁ
Genc(pk, x) → c ᵁ, c

Geval(ᵁ, c) → Y

Y
Gdec(sk, Y) → y

f, x



Problem: 1st try only works once.

How can we allow for multiple 
function evaluations?

Why not just keep sending more inputs?



2nd try: single-client, multi-use

Intuition: garbled inputs encrypted with FHE

P1 Server



Fully Homomorphic Encryption
● Fgen(1k) → (pkFHE, skFHE)

● Fenc(pkFHE, m) → c

● Fdec(skFHE, c’) → m’

● Feval(pkFHE, f, c1,...,cn)



2nd try: single-client, multi-use

Setup Phase

P1 Server

Garble(1k, f) → pk, sk, ᵁ
ᵁ
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2nd try: single-client, multi-use
P1 Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x) → c
Fenc(pkFHE, c) → c’ c’

Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’
Y’

Fdec(skFHE, Y’) → Y
Gdec(sk, Y) → y

ᵁ



How to go multiparty?

We’ll need some new tools.

What prevents the 2nd try from generalizing to multiparty setting?



Oblivious Transfer (OT)
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Oblivious Transfer (OT)
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OT
mb

Sender
Receiver

● learns mb
● does not learn m1-b

● does not learn b
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Proxy Oblivious Transfer (POT)

m0
m1

b

POT

mb

● does not learn b

● does not learn m0
● does not learn m1

● learns mb
● does not learn m1-b
● does not learn b



Proxy Oblivious Transfer (POT)

m0
m1

b

mb

᷍
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What it really looks like:



Proxy Oblivious Transfer
● SetupS(1k) → (pks, sks)

● SetupC(1k) → (pkc, skc)

● Snd(pkc, sks, m0, m1) → ᷍
● Chs(pks, skc, b) → ᷎
● Prx(pks, pkc, ᷍, ᷎) → y

● y=mb



3rd try: multi-user, multi-use

Intuition: use POT to allow P2...Pn to pick their 
inputs for the Garbled Circuit

P1 ServerP2...n



3rd try: multi-user, multi-use

Setup Phase
P1 Server

Garble(1k, f) → pk, sk, ᵁ
SetupS(1k) → pks, sks ᵁ

P2...n

SetupC(1k) → pkc, skc



3rd try: multi-user, multi-use
P1

Server

Fgen(1k) → (pkFHE, skFHE)
Genc(pk, x1) → c1
Fenc(pkFHE, c1) → c1’

for i from 2 to n and for j from 1 to l 
(l = length of input):

x0=Fenc(skFHE, Genc(pk, 0))
x1=Fenc(skFHE, Genc(pk, 1))
Snd(pkci, sks, x0, x1) → ᷍ij

c1’, ᷍ 



3rd try: multi-user, multi-use

Server

for j from 1 to l:
Chs(pks, skci, xij) → ᷎ij

Send all ᷎ij to Server

᷎i 

P2...n



3rd try: multi-user, multi-use

P1

Server

For each i,j: Prx(pks,pkci, ᷍ij, ᷎ij) → cij’
Reassemble c1’ and all cij’ in order of 
subscript into c’
Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’

Y’



3rd try: multi-user, multi-use

P1

Server

For each i,j: Prx(pks,pkci, ᷍ij, ᷎ij) → cij’
Reassemble c1’ and all cij’ in order of 
subscript into c’
Feval(pkFHE, Geval(ᵁ, ∙), c’) → Y’

Y’

Fdec(skFHE, Y’) → Y
Gdec(sk, Y) → y



Summary
● Extended Verifiable Computation to multiparty setting

● Used POT, Garbled Circuits, and FHE

● Compute Garbled Circuit inside FHE

● Use POT so clients P2...n can pick from inputs sent by P1

● Next: Secure Computation



On-the-Fly Multiparty Computation
on the Cloud via Multikey 

Fully Homomorphic Encrptyion
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Multiparty Computation
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Secure Multiparty Computation (MPC)

Enc
(x 1

)

E
nc

(x
2
) E

nc(x
3 )

Enc(x
4 )

x
1

x
2

x
3

x
4

SimulatedSimulated
Third PartyThird Party

f(x
1
,x

2
,x

3
,x

4
) x

f



Secure Multiparty Computation (MPC)

● Security Models

– Semi-Honest Adversaries follow the protocol 
as described but try to learn information about 
honest player's input

– Malicious Adversaries can deviate from the 
protocol to learn honest player's input



Secure Multiparty Computation (MPC)

● Security Models

– Semi-Malicious Adversaries are like semi-
honest adversaries but can sample random 
elements from any arbitrary distribution



Secure Multiparty Computation (MPC)

● Problem with regular MPC?

– Highly interactive

– One-time use

– Assume all parties are equally powerful



On-the-Fly MPC on the Cloud

Powerful Cloud

Weak Clients
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On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud
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Please compute
f on client 1, 3, and

4's data! 



On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud
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On-the-Fly MPC on the Cloud

   Z
 Z
z

   Z
 Z
z

   Z
 Z
z

Anyone else?

Yes!
Please compute
g on client 2 and

4's data! 

g(·,
·)



Properties

We want:

– Dynamically chosen functions on-the-fly

– Functions compute on an arbitrary subset of 
data

– Non-interactive function evaluation on the cloud



Properties

We want:

– Clients are unaware of the identity or the number 
of other clients

– Relevant clients approve the choice of functions  
after evaluation and before decryption



Semi-Malicious Construction: 
Building Blocks

Multikey Fully Homomorphic Encryption

{Ɛ(N)=(Keygen,Enc,Dec,Eval)}
N>0

where N is the number of key pairs

– Key Generation
● (pk,sk,ek)←Keygen(1k) 



Semi-Malicious Construction: 
Building Blocks

Multikey Fully Homomorphic Encryption

– Encryption
● c←Enc(pk,m)

– Decryption

● m:=Dec(sk
1
,...,sk

N
,c)



Semi-Malicious Construction: 
Building Blocks

Multikey Fully Homomorphic Encryption

– Evaluation

● c:=Eval(C,(c
1
,pk

1
,ek

1
),...,(c

l
,pk

l
,ek

l
))

where each tuple of {(pk
i
,sk

i
,ek

i
)}

i [l]∈
 is in 

{(pk
j
,sk

j
,ek

j
)}

j [N]∈



Semi-Malicious Construction: 
Building Blocks

Multikey Fully Homomorphic Encryption

– Correctness

● Dec(sk
1
,...,sk

N
,c)=C(m

1
,...,m

l
)

– Compactness
● |c|≤P(k,N)



Semi-Malicious Construction: 
Building Blocks

Multikey Fully Homomorphic Encryption

– Compactness is important, since we don't want 
the running time of decryption to depend on the 
size of circuits



Semi-Malicious Construction: 
Building Blocks

Semi-Malicious Secure MPC

– Server-Aided Secure MPC
● Powerful server and weak clients
● Most computation are carried out by the 

server
● Clients only communicate with the server



Semi-Malicious Construction:
Where the Building Blocks fit 
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Semi-Malicious Construction:
Where the Building Blocks fit 

Online Phase

– Choose a function

f(·,·,·)



Semi-Malicious Construction:
Where the Building Blocks fit 

Online Phase: Step 1

1)The server performs 
multikey FHE

2)The server broadcasts the 
evaluated ciphertext to all 
computing parties
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Semi-Malicious Construction:
Where the Building Blocks fit 

Online Phase: Step 2

– Run server-aided 
MPC protocol to 
decrypt the evaluated 
ciphertext 

Server-AidedServer-Aided
MPCMPC

Z
   Z
      z

Interactions



Problems with the Semi-Malicious 
Construction

1) Clients may encrypt data incorrectly

2) Server may compute functions incorrectly

3) Clients may cheat in semi-malicious MPC

4) Clients may use an invalid secret key to decrypt the 
resulting ciphertext



Malicious Construction

Clients may encrypt data incorrectly

Fix: Clients must prove this NP relation to server:

RENC={ ( (pk,c),(x,s) ) | c = Enc(pk,x; s) }

where s is some random string

How? Zero-knowledge Proof



Malicious Construction 

Non-Interactive Zero Knowledge (NIZK)

● (Interactive) Zero-Knowledge Proof

message aProver Verifier

challenge c

answer z



Malicious Construction 

Non-Interactive Zero Knowledge (NIZK)

● NIZK

common reference string (CRS)Prover Verifier

message a,
challenge c,
answer z



Malicious Construction

Server may compute functions incorrectly

Fix: Server verifies its computation to clients 
● Use succinct non-interactive arguments of 

knowledge (SNARK) 
● Similar to PCP theorem, but non-interactive



Malicious Construction

Clients may cheat in semi-malicious MPC

Fix: Replace semi-malicious MPC with malicious 
MPC 



Malicious Construction

Clients may use an invalid secret key to decrypt 
the resulting ciphertext

Fix: Change the decryption function to this:



Malicious Construction: Summary
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Malicious Construction: Summary
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Malicious Construction: Summary
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Malicious Construction: Summary
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How about a protocol with
fewer interactions?



Protocol with Fewer Interactions
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Protocol with Fewer Interactions
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Protocol with Fewer Interactions
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Reduction to VBB Obfuscation

Enc(C
)

Enc(x)

F(·,·)
where

F(x,y)=y(x)



Reduction to VBB Obfuscation

Enc(C)

F'(Enc(x),Enc(C)) Enc(C(x))

Enc(x)



Reduction to VBB Obfuscation

Enc(C(x))



Reduction to VBB Obfuscation

C(x
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Reduction to VBB Obfuscation

F(·,·)

x

C(x)

Enc(x)



Questions?
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