
CS 4501-6501 Topics in Cryptography February 4, 2015

Lecture 7

Lecturer: Mohammad Mahmoody Scribe: Matt Irvine

1 Learning With Errors: Decision vs. Search

In the previous class we discussed the Learning With Errors (LWE) problem where we are given a
tuple (~a, 〈~a,~s〉 + e) where ~a is a vector chosen uniformly at random from Z∗p, ~s is a vector chosen
from Z∗p, and e is the error in Zp drawn from a suitable (generally Gaussian) distribution. There are
two versions of this problem to consider. First, the search version: given a polynomial number of
samples of such tuples, the problem is to find the secret ~s. Second, the decision version: distinguish
between noisy samples and random data. Though it intuitively seems that the decision version
would be easier to solve, and it is trivially clear that solving the search version allows one to solve
the decision version, it can be shown that the search version reduces to the decision version.

1.1 Reduction from Search to Decision

Consider an adversary A who can solve the decision version. That is, given a tuple (~a, 〈~a,~s〉+ e) as
outlined above, A can distinguish between such a tuple and random data. This can be used to solve
for ~s one component at a time. For the first component s1 in ~s guess a value k ∈ Zp. Now choose a
random and uniformly distributed r. Transform each of the given samples (~ai, bi) by calculating the
tuple (~ai+(r, 0, 0, ..., 0), bi+rk). Now run this transformed tuple through the decision solver. If the
guess for k = s1 was correct, then the decision solver will recognize the transformed tuple as a noisy
sample. Otherwise, since p is prime the transformation has a uniform random distribution and the
decision solver recognizes it as random data. This process can be repeated for each component si
of ~s. Try all values of si = k for each si and the decision solver will reveal when the guess for k is
correct, allowing all components of ~s to be determined.

2 Constructing Encryption from LWE

Once we assume that solving the decision version of the LWE problem is hard, we can construct an
encryption scheme that relies on this hardness. The hardness of LWE is shown to be reducible to
the hardness of the approximate shortest vector problem, which is believed to be computationally
hard, by Regev in [Reg05].

2.1 Private Key Encryption

2.1.1 Introductory Attempt at Private Key Encryption

Let ~s be a private key between Alice and Bob. Then we might attempt to create an encryption
scheme by encoding 0 as a noisy sample of ~s by creating the tuple (~a, 〈~a,~s〉 + e) and encoding
1 as (~a, b) where b is chosen at random. It is trivially clear that the encodings of 0 and 1 are
indistinguishable from random data by the LWE assumption. However, this attempt does not
give us a correct encryption scheme. If Alice sends (~a, b) to Bob, then Bob can solve the formula
(~a, b) = (~a, 〈~a,~s〉+ e) for e since he knows ~a and ~s. If the calculated error is relatively small, that

7-1

is, |e| < B for some constant B, then Bob knows that the given b is a representation of 0. However,
if |e| ≥ B then Bob has no information about the value that b encodes.

2.1.2 Successful Attempt at Private Key Encryption

Only a small change is required to the introductory attempt in order to create a private key
encryption system that is both secure and correct. Instead of encrypting 1 as (~a, b) where b is
completely random, we encrypt 1 as (~a, 〈~a,~s〉 + e) where e is shifted by q

2 . The correctness of
this scheme is clear from the introductory attempt. Bob will compute e from the formula (~a, b) =
(~a, 〈~a,~s〉+ e) as before. If |e| < B then Bob knows that b encodes 0. If q

2 + B < |e| < q
2 − B then

Bob knows that b encodes 1.

Figure 1: A Gaussian distribution of e,
where the values of Zp are distributed
around the circle for p = 127 [Reg05]

2.1.3 Security of Private Key Encryption

It is more difficult to prove the security of our successful encryption scheme. Again the question is
whether Enc(0) and Enc(1) can be distinguished by an adversary who does not know the secret
key ~s. Let A represent the adversary’s algorithm and Pb be the probability that A(Enc(b)) = 1
for the given b. If Pb is different for b = 0 and b = 1 then A can successfully distinguish between
Enc(0)andEnc(1) if absP0 − P1 > ε where ε is on the order of 1

poly(n) . However, if the adversary
has such an efficient algorithm A then the adversary can solve the Learning with Errors problem in
polynomial time. Suppose that the adversary is given the tuple E0 = (~a, 〈~a,~s〉+ e) where e← x0.
That is, e is not shifted by q

2 . In this case, Prob(A = 1) = P0. Now consider the case where
the adversary is given the tuple R0 = (~a, b) where b is chosen randomly and is not shifted by q

2 .
In this case, Prob(A = 1) = q0. We have already shown that E0 cannot be distinguished from
random data, so P0 = q0. Now we repeat this for encodings of 1. Suppose that the adversary is
given E1 = (~a, 〈~a,~s〉 + e) where e ← x0 + q

2 . Here Prob(A = 1) = P1. Also consider the case
where the adversary is given the tuple R1 = (~a, b) where b is chosen randomly then shifted by q

2 .
By the LWE assumption, E1 cannot be distinguished from R1 because if some algorithm A′ could
distinguish between the two then we could solve the LWE decision problem by adding q

2 to the given
b and running A′ on that input. Therefore, P1 = q1. Now, recall that in R0 b is chosen randomly
and is not shifted by q

2 whereas in R1 b is chosen randomly and is then shifted by q
2 . However,

shifting a uniformly distributed random number by a constant results in a random number with
the same distribution, so q0 = q1. Therefore, P0 = q0 = q1 = P1 so it must be impossible for such

7-2

a polynomial time algorithm A to exist if LWE is hard. Therefore, we can conclude that if LWE
is hard then this encryption scheme is secure; that is, an adversary cannot distinguish between an
encryption of 0 and an encryption of 1 efficiently.

2.2 Homomorphism of Private Key Encryption

The given private key encryption scheme is additively homomorphic. Given some ciphertext C =
c1, ..., cn where each ci = Enc(mi) for some bit mi, recall that each ci takes the form (~a, 〈~a,~s〉+ e)
where either e ← x or e ← x + q

2 depending on if ci encodes 0 or 1 respectively. Consider the
case where we are attempting to add two values c1 and c2. Then c′ = c1 + c2 = (~a1 + ~a2, b1 + b2).
This results in c′ = ((~a1 + ~a2), 〈 ~a1 + ~a2, ~s〉 + e1 + e2. Let e′ = e1 + e2. If m0 = m1 = 0 then
e′ ← x + x, which is the representation of 0 as expected. If m0 = m1 = 1 then e′ ← x + x + q

2 + q
2

and since all operations are modulo q, this is equivalent to x + x which again is the representation
of 0 as expected. If m0 and m1 are different then e′ ← x + x + q

2 which is the representation of 1
as expected. From this, we can see that the encryption scheme is additively homomorphic.

2.2.1 Noise Bounds for Additive Homomorphism

LWE is useful in this encryption scheme because we can shift the Gaussian-distributed noise, allow-
ing identification of encodings of 0 versus encodings of 1 given the private key ~s. This identification
can take place because the noise is bounded by some constant B. However, when we add compo-
nents as shown above the bound on the resulting noise gets looser. For each of the additions shown
above, if e′ = e1 + e2 and e1 and e2 each have a noise bound of B, then e′ has noise bounded by
2B. If |B| is sufficiently smaller than q we can achieve a large number of additions before losing
correctness. In general, with a bound B on noise and all operations taking place modulo q, we can
add (XOR) q

2B cyphertexts.

References

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC:
ACM Symposium on Theory of Computing (STOC), 2005.

7-3

