CS 4501-6501 Topics in Cryptography Wednesday, March 4

Lecture 15
Lecturer: Mohammad Mahmoody Scribe: Kevin Clark

1 Functional Encryption review

In session 15 we generalized our discussion of functional encryption, cov-
ered how to define security for it, extended it to cover functions that take
multiple inputs and ended with an inquiry into obfuscation. To review, let
us start with a concise, formal definition of a functional encryption scheme
that is notationally convenient for our discussion of security. (all standard
public key scheme algorithms begin with the prefix PK)

Let the set X be the plaintext space. A Functional Encryption scheme
consists of the following four algorithms for all z € X.

1. FE.Master Key Gen — (pk, mk)

This is the start of a functional encryption scheme, it is a randomized
process by which a key pair is generated, one public key (pk) to be released,
and one master key (mk) to be kept secret by the entity running the scheme.

2. FE.Keygen(mk, f(.)) — sky()

This is the key generation step. Here f(.) specifies the function we wish
to use the system for, and sk) is the secret key generated for that function.

3. FE.Enc,(pk,) — ¢

This is the encryption step whereby a value (x) is encrypted using the
public key established during the setup, yielding the ciphertext c.

4. FE.Dec(skyf(y, c) =y

This is the heart of the functionality we desire, it is where we use sk
to compute f(z) from c¢; The equality y = f(x) always holds.

15-1

2 Security Game

Defining security for a functional encryption is a non-trivial task. Intu-
itively, we would like for an attacker to learn nothing about how to compute
fn(z) given access to the ciphertext FE.Enc(pk,) — ¢ and any number of
secret keys from functions f;(.), such that i # n. This means that using the
scheme in any way does not help an attacker learn anything about a new
function he/she has not used the scheme on. To formalize this we define the
following security game.

We define security against an adaptive adversary that can ask for any
number of secret keys sky,) of the attacker’s choice from the challenger.
Once the attacker obtains all the secret keys he wishes, he provides the
challenger with two inputs, x1, and x2. The challenger then provides the
adversary with either FE.Enc(pk, z1) or FE.Enc(pk, x2) chosen at random.
If the attacker has a secret key sky,(y for some i where fi(71) # fi(w2) then
he can answer the challenge by simply running f;(r1) and FE.Dec(sky, (),
¢). If they are equal then the challenger provided him with FE.Enc(pk, x1),
if not then he gave him FE.Enc(pk, z2).

As such, we must impose the following restriction upon the adversaries
choice of x1 and xs:

(1): fj(z1) = fj(x2) for all j where the attacker has sky, ()

With this restriction in place, the game can be defined as follows:

- Setup: Challenger runs FE.Master Key_Gen — (pk, mk) and gives the
Adversary pk

- Query: Adversary submits queries f;(.) for i = 1,2,... and is given
FE.Keygen(mk, fi(.)) — sky,()

- Challenge: Adversary submits two inputs, x1, x9, that satisfy (1) and
is given ¢ = FE.nc(pk, z3), where b is chosen at random from the set 1, 2.

- Guess: Adversary may issue further queries or ask the challenger for

15-2

FE.Dec(sky, (., c¢). Adversary eventually guesses whether ¢ = FE.Enc(pk,
x1) or ¢ = FE.enc(pk, z2).

The adversary wins if his chance of guessing correctly is less than or equal
to 1/2 + a negligible amount, neg(n)

3 Constructing Fucntional Encryption

Having established this definition, our desire naturally extends to looking
at how we can construct function encryption schemes for an arbitrary set of
functions.

With a public key encryption scheme in hand, it is useful to examine how
we could construct such a scheme for a single function.

F:={n0}
Ist try: Let skp () = mk

This obviously opens the security game to a trivial attack. The adversary
simply queries for the secret key for fi() and is given the master key mk.
When given the challenge ¢, he simply runs PK.Dec(mk, c), which would
yield either x; or z9 and allow him to win the game with probability 1.

As a new approach, let us change how we encrypt the data. Instead of
encrypting x, let us encrypt f(x). By doing this, the attack in the above sce-
nario no longer works because providing the Adversary with the decryption
key no longer allows him to learn the identity of x, only f(x)

Let F = {f1(.), fo(.)....fn(.)}, an arbitrary set of functions

We modify the Master Key Generation step and Encryption steps to pro-
duce a public-private key pair for each function and encrypt any input x
into a cyphertext containing the encryption of x according to all of the keys.

FE.Master Key Gen — {{pky, (), Pks,()----Dks,)}, {mkg), mE gy)y-mky,)} }

FE.Keygen(pky,), fi(.)) — sky,(), where sk,) = pky,()

15-3

FE.Ency(x) — {FE.Encl(pkfl('), fi(x)), FE.Enc; (pk:fz(.), fg(a;))....FE.Encl(pkfn(,),
fa(2))}

The ciphertext now contains, in vector form, an encrypted version of
fi(z) for every i.

3.1 Proof of security

Let us examine the security game we defined within this encryption scheme
given a set, Z, of n functions

- Setup: Challenger runs Master Key Gen — {{pky,(),pkp,()----Pky, ()}
{mky, (), mkg,()....mky, ()} and gives the challenger the set {pky, (), pks,()----Pkys, ()}

- Query: Let us say that the adversary exhaustively queries the challenger for
the entire set of secret keys, thereby obtaining the set {sky, (), skg,()----skg, ()}
this is, of course, unnecessary as pky,) = sky,() but is included for notational
consistency. At this point the adversary has learned all possible information
since he has the entire set of secret keys.

- Challenge: the adversary submits two inputs, x1 and xo such that 1 # xo
and fij(z1) = fi(x2). Because of the way we changed the encryption scheme,
the adversary returns, in vector form, the ciphertext

¢ = {FE.Enci(pky, (), fi(zp)), FE.Enci(pky,(), fa(xp))....FE.Enci(pky, (),
fn(p))}-

Because the adversary has the entire set of decrption keys he can decrypt
this vector into

{f1(2o); fa(wo)-. fulwp)}

if b = 1, then this set is {f1(x1), fo(x1)....fn(x1)}
if b = 2, then this set is {fl(l‘Q), fz(l'g)fn(ZCQ)}

Let us assume that the adversary can win the game. This means that he
can tell the difference between these two sets, but because fi(z1) = fi(z2)
for all i, these two sets are indentical, and therefore indistinguishable. This
is a contradiction, and therefore the adversary cannot win the game.

15-4

4 Multi-Input Functional Encryption

We now extend our definition of Functional Encryption to cover function
classes that contain functions with multiple inputs. Informally, we want
to allow a user who obtains a secret key sk¢(.) and the ciphertexts ¢ =
Enc(z1), co = Enc(z2)... ¢, = Enc(x,), to compute the function f(xy, zs...
Z,) without learning anything else about z1, ... z.

There are several key differences from functional encryption for unary func-
tions:

1. Firstly, the set of functions, F, we wish to define the scheme for now
contains functions that take an arbitrary number of inputs, f : 2™ — x

2. It follows that our decryption algorithm must now be Dec(c1, c2, sky,())
— f(z1,x3...xy), where Dec(mk, ¢;) = z1, Dec(mk, c2) = za... Dec(mk,
Cn) = Tp,

4.1 extension to obfuscation

When try to build functional encryption for 2 inputs, we can construct an
interesting reduction that allows us to perform obfuscation. Obfuscation is
the process by which a Challenger can give an adversary the ability to run
a program without learning anything about it.

Suppose we want to obfuscate a circuit C:

We first generate public and private key sets for a 2 input Functional en-
cryption scheme. Now consider the function

(2) £(...) where [(C,z) = C(x)
The objuscation of C would be then would be the tuple {Enc(pk, C)=
, sk y,}. Since C' is encrypted we do not know anything about it or how

it works

We could then Enc(pk,) — ¢, and fun our 2 input functional decryption
algorithm Dec(Enc(pk, C), ¢) = f(C,z) = C(z).

15-5

