
CS 4501-6501 Topics in Cryptography February 16, 2015

Lecture 10

Lecturer: Mohammad Mahmoody Scribe: Tahseen Rabbani

1 Delegation of Computation

We will be considering the scenario in which a weak entity (delegator) wishes to delegate a costly
computation to a strong entity (worker). We will consider the case in which the weak entity wants
to delegate the computation of f(x) for some polynomial-time computable function f(·).

1.1 Delegation Protocol

It is possible that the delegator may not trust the worker and requires that the worker prove the
computation is correct. In this perspective, the delegator is a deterministic ”verifier” and the
worker is the ”prover.” The prover provides a solution y of f(x) and a proof π to convince the
verifier of the truth of the solution, denoted x, belongs to some fixed language L. The verifier may
either choose to accept or reject (x, y, π), respectively denoted Ver(x, y, π) = 0∨ 1. By assumption,
the verifier should have a running time significantly smaller than the time complexity of f , and the
prover’s running time should be in polynomial time in the time complexity of f .

We would like the verification process to be sound and perfectly complete. Perfect completeness
means that if the worker provides (x, y, π) such that y = f(x), then Pr[Ver(x, y, π) = 1] = 1.
Soundness means that if the prover provides (x, y, π) such that y 6= f(x), then Pr[Ver(x, y, π) = 0]
is ”very high,” which we will make more concrete in the next section.

1.2 MA

We say that a language L is of class MA (for Merlin-Arthur) if there exists a polynomial-time
deterministic Turing machine M and polynomials poly1 and poly2 such that for every input string
of length |x|,

• if x ∈ L, then ∃|w| ≤ poly1(|x|) such that ∀y ≤ poly2(|x|), Pr[M(x, y, w) = 1] = 1.

• if x 6∈ L then ∀|w| ≤ poly1(|x|), ∀y ≤ poly2(|x|), Pr[M(x, y, w) = 0] = 1− µ(|x|),

where the negligible function µ(|x|) is one that is smaller than 1/poly(|x|). By letting M = Ver,
it is easy to see how these conditions satisfy the properties of our previously described perfectly
complete delegation protocol.
MA can be thought of as the randomized NP class, with the randomness referring to the

strings |y| < poly2(|x|).

2 Interactive proofs

In this section, we will consider how our delegation protocol changes if interaction is allowed in the
proof verification. First a reminder: NP-completeness of SAT (or any other NP-complete decision
problem) means that there is an efficient mapping ϕL(·) such that x ∈ L⇔ ϕL(x) ∈ SAT.

10-1

2.1 IP and Graph Non-Isomorphisms

For a pair of interactive algorithms (P, V), we denote their interaction over a common input x by
P ↔ V , upon which V chooses to accept or reject x (which is the truth of some statement in some
fixed language L).

We say that L ∈ IP if there exists a pair (P, V), where P is computationally unbounded, and
V is running in probabilistic poly(|x|), such that

• if x ∈ L then Pr[V ↔ P accepts x]=1.

• if x 6∈ L, then for any P ∗ (even cheating), we have that Pr[V ↔ P ∗ rejects x] = 1− µ(|x|).

In the context of an abstract delegation scheme, P would be a prover, and V would be the verifier.
An interesting example of a problem in IP is the Graph Non-Isomorphism problem. We say

that a pair of graphs (G1, G2) ∈ L if G1 6∼= G2. Of course, the only interesting case is when G1 and
G2 have the same number of vertices. The interactive proof system is as follows:

1. Verifier randomly chooses H ∈ {G1, G2}. A permutation τ is applied to yield the graph
τH = H̄. This corresponds to a permuation of rows/columns in the adjacency matrix of H.

2. Verifier sends H̄ to the prover.

3. WLOG, the prover replies with 0 if H̄ ∼= G1 and replies with 1 if H̄ ∼= G2.

4. Verifier accepts the reply if and only if the prover replies with the bit corresponding to the
original selection (graph).

If G1 6∼= G2, the prover will always answer correctly. If G1
∼= G2, that is (G1, G2) ∈ L, then

the prover (even when cheating) will fail to guess correctly with probability 1/2, since G1 (G2) is
distributed with a copy of itself. Is it important to note that we can decrease the error from 1/2
to 1/2k by k repetitions of the protocol.

2.2 PSPACE and the PCP Theorem

PSPACE is the set of all decision problems which can be solved by Turing machine using a
polynomial-bit algorithm, i.e., problems which are computable with ”efficient” memory.

Theorem 1. IP = PSPACE

This result is due to Adi Shamir [Sha92].
SAT, in fact, in PSPACE. If ϕ has n variables, our goal is to find out if there exists an assignment

x ∈ {0, 1}n such that ϕ(x) = 1. To try all possibilities, we don’t need exponentially many bits;
only n bits are needed. Furthemore, the SAT is trivially IP since it is NP.

In our definition of IP, it is possible for the prover to be running in large time complexity.
Returning to our original delegation protocol, we require the prover to be running in polynomial
time, so how can we use Shamir’s theorem to aid us in this endeavor? Hopefully, problems which
are computable with logarithmically many bits can be proven in polynomial time. This class of
problems would not be terribly large, but it would be nontrivial, and we could employ our original
delegation protocol over this class.

The first step towards achieving our delegation protocol is ”short proofs” of a given statement.
Short proofs are not always possible, but the following theorem shows us that we may be able to
convince a verifier with only a small number of bits of the original proof.

10-2

Theorem 2 (PCP Theorem). Every language L ∈ NP has a probabilistic verifier V er such that

• if x ∈ L, there exists a convincing proof π which V er accepts with probability 1.

• if x 6∈ L, V er rejects every proof with probability at least 1/2.

Furthermore, V er examines only a constant number of bits k in π.

This result is given and proven in [?]. Johan H̊astad gave the following improvement in [?].

Theorem 3. Every language L ∈ NP has a probabilistic verifier V er such that

• if x ∈ L, there exists a convincing proof π which V er accepts with probability ≥ 999
1000 .

• if x 6∈ L, V er rejects every proof with probability at least 1/2.

Furthermore, V er examines only 3 bits in π.

References

[Sha92] A. Shamir. IP = PSPACE. J. ACM, 39:869–877, 1992.

10-3

